CCI_chapter 4 trees and Grapths

4.1Implement a function to check if a tree is balanced For the purposes of this question,a balanced tree is defned to be a tree such that no two leaf nodes difer in distance from the root by more than one

 http://www.cnblogs.com/graph/archive/2013/04/12/3016433.html

4.2DFS

4.3Given a sorted (increasing order) array, write an algorithm to create a binary tree with  minimal height

http://www.cnblogs.com/graph/p/3184984.html

4.4 Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth (eg, if you have a tree with depth D, you’ll have D linked lists)

http://www.cnblogs.com/graph/p/3251831.html

题目类似,就不多做了

4.5Write an algorithm to fnd the ‘next’ node (e g , in-order successor) of a given node in a binary search tree where each node has a link to its parent

struct Node

{

    int data;

    struct Node* left;

    struct Node* right;

    struct Node* parent;

};

Node * minNode(Node * cur){

    

    while(NULL != cur->left){

        cur = cur->left;

    }

    return cur;

    

}

Node * inOrderSucc(Node *cur){
if(cur == NULL) return NULL;
if(NULL != cur->right) return minNode(cur->right); Node * p = cur->parent; while(NULL != p && p->right == cur){ cur = p; p = p->parent; } return p; }

reference : http://www.geeksforgeeks.org/inorder-successor-in-binary-search-tree/(不喜欢CCI上的渣渣答案)

4.6Design an algorithm and write code to fnd the frst common ancestor of two nodes in a binary tree Avoid storing additional nodes in a data structure NOTE: This is not 

necessarily a binary search tree

http://www.cnblogs.com/graph/p/3271292.html

 

4.7 You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes Create an algorithm to decide if T2 is a subtree of T1

无聊的一道题,解法完全没有体现出来大数据

/**

 * Definition for binary tree

 * struct TreeNode {

 *     int val;

 *     TreeNode *left;

 *     TreeNode *right;

 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}

 * };

 */

bool isMatch(TreeNode * T1, TreeNode &T2); 

bool isSubtree(TreeNode *T1, TreeNode *T2){



    if(T2 == NULL) return true;

    if(NULL == T1) return false;

    if(T1->val == T2->val && ismatch(T1, T2)){

        return true;    

    }

    return isSubtree(T1->left , T2) || isSubtree(T1->right, T2) ;



}

bool isMatch(TreeNode * T1, TreeNode &T2){

    if(T1 == NULL && T2 == NULL) return true;

    if(T1 == NULL || T2 == NULL) return false;

    

    if(T1->val != T2->val) return false;

    

    return isMatch(T1->left , T2->right) && isMatch(T1->right, T2->right);



}
View Code

4.8 You are given a binary tree in which each node contains a value Design an algorithm  to print all paths which sum up to that value Note that it can be any path in the tree 

- it does not have to start at the root

CCI 给的答案实在不爽,明明就是一个后续遍历的应用。非要搞的莫名其妙的。

声明: 以下代码只是写出了我的思路,没有经过测试

struct Node{

    int val;

    Node * left;

    Node * right;

    Node(int value):val(value), left(NULL),right(NULL){}

};

void print(stack<int> s){

     while(!s.empty()){

            cout<<s.top() <<" ";

            s.pop();

    }

    cout<<endl;

}

void findSum(Node *root,int sum, vector<stack<int>> &path, vector<stack <int>> &path_sum ){



        if(root == NULL) return ;

        if(root->left == NULL && root->right == NULL){

            stack<int> p,s;

            p.push(root->val);

            s.push(root->val);

            path.push_back(p);

            path_sum.push_back(s);

            return;

        }

        

        vector<stack<int>> pathLeft, pathRight , sumLeft, sumRight;

        if(root->left != NULL)

                findSum(root->left, sum, pathLeft,sumLeft);

        if(root->right != NULL)

                findSum(root->right, sum, pathRight, sumRight);

        

        int cur = root->val;

        for(int i = 0; i < pathLeft.size(); i++)

        {

            pathLeft[i].push(cur);

            int top = sumLeft[i].top() + cur;

            sumLeft[i].push(top);

            if(top == sum)

                    print(pathLeft[i]);

                    

            path.push_back(pathLeft[i]);

            path_sum.push_back(sumLeft[i]);

        }

        

        for(int i = 0; i< pathRight.size(); i++)

        {

            pathRight[i].push_back(cur);

            int top = sumRight[i].top() + cur;

            sumRight[i].push(top);

            if(top == sum)

                print(pathRight[i]);

                

            path.push_back(pathRight[i]);

            path_sum.push_back(sumRight[i]);

        }

}

 

 

 

 

你可能感兴趣的:(tree)