最大公因数与最小公倍数的关系(公式推导)

最大公因数与最小公倍数公式概览

a , b a,b a,b 的最小公倍数 l c m ( a , b ) lcm(a,b) lcm(a,b)
a , b a,b a,b 的最大公因数 g c d ( a , b ) gcd(a,b) gcd(a,b)

a , b , c a,b,c a,b,c 的最小公倍数 l c m ( l c m ( a , b ) , c ) lcm(lcm(a,b),c) lcm(lcm(a,b),c) (二者先求最小公倍数,结果与第三个数求最小公倍数)
a , b , c a,b,c a,b,c 的最大公因数 g c d ( g c d ( a , b ) , c ) gcd(gcd(a,b),c) gcd(gcd(a,b),c) (二者先求最大公因数,结果与第三个数求最大公因数)

l c m ( a , b ) = a × b / g c d ( a , b ) lcm(a,b)=a\times b /gcd(a,b) lcm(a,b)=a×b/gcd(a,b)

g c d ( l c m ( a , b ) , c ) = l c m ( g c d ( a , c ) , g c d ( b , c ) ) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c)) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c))

g c d ( l c m ( a , b ) , c ) = l c m ( g c d ( a , c ) , g c d ( b , c ) ) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c)) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c))推导

初步理解

首先,我需要理解 gcd \text{gcd} gcd lcm \text{lcm} lcm 的定义及其基本性质。

  • 最大公因数( gcd \text{gcd} gcd:两个或多个整数共有约数中最大的一个。
  • 最小公倍数( lcm \text{lcm} lcm:两个或多个整数共有倍数中最小的一个。

此外, gcd \text{gcd} gcd lcm \text{lcm} lcm 之间有一个重要的关系:

gcd ( a , b ) × lcm ( a , b ) = a × b \text{gcd}(a, b) \times \text{lcm}(a, b) = a \times b gcd(a,b)×lcm(a,b)=a×b

分析等式

我们需要证明的等式涉及三个变量 a a a, b b b, c c c,并且结合了 gcd \text{gcd} gcd lcm \text{lcm} lcm 的运算。为了简化问题,我考虑使用素因数分解的方法,因为 gcd \text{gcd} gcd lcm \text{lcm} lcm 都可以通过素因数分解来表示。

素因数分解法

假设 a a a, b b b, c c c 的素因数分解分别为:

a = ∏ p p α p , b = ∏ p p β p , c = ∏ p p γ p a = \prod_{p} p^{\alpha_p}, \quad b = \prod_{p} p^{\beta_p}, \quad c = \prod_{p} p^{\gamma_p} a=ppαp,b=ppβp,c=ppγp

其中, p p p 是素数, α p \alpha_p αp, β p \beta_p βp, γ p \gamma_p γp 是非负整数,表示对应素数的幂次。

根据素因数分解, gcd \text{gcd} gcd lcm \text{lcm} lcm 可以表示为:

gcd ( a , b ) = ∏ p p min ⁡ ( α p , β p ) \text{gcd}(a, b) = \prod_{p} p^{\min(\alpha_p, \beta_p)} gcd(a,b)=ppmin(αp,βp)

lcm ( a , b ) = ∏ p p max ⁡ ( α p , β p ) \text{lcm}(a, b) = \prod_{p} p^{\max(\alpha_p, \beta_p)} lcm(a,b)=ppmax(αp,βp)

表达式的素因数分解

现在,我们将等式两边的表达式用素因数分解表示。

左边: gcd ( lcm ( a , b ) , c ) \text{gcd}(\text{lcm}(a, b), c) gcd(lcm(a,b),c)

首先,计算 lcm ( a , b ) \text{lcm}(a, b) lcm(a,b)

lcm ( a , b ) = ∏ p p max ⁡ ( α p , β p ) \text{lcm}(a, b) = \prod_{p} p^{\max(\alpha_p, \beta_p)} lcm(a,b)=ppmax(αp,βp)

然后,计算 gcd ( lcm ( a , b ) , c ) \text{gcd}(\text{lcm}(a, b), c) gcd(lcm(a,b),c)

gcd ( lcm ( a , b ) , c ) = ∏ p p min ⁡ ( max ⁡ ( α p , β p ) , γ p ) \text{gcd}(\text{lcm}(a, b), c) = \prod_{p} p^{\min(\max(\alpha_p, \beta_p), \gamma_p)} gcd(lcm(a,b),c)=ppmin(max(αp,βp),γp)

右边: lcm ( gcd ( a , c ) , gcd ( b , c ) ) \text{lcm}(\text{gcd}(a, c), \text{gcd}(b, c)) lcm(gcd(a,c),gcd(b,c))

首先,计算 gcd ( a , c ) \text{gcd}(a, c) gcd(a,c) gcd ( b , c ) \text{gcd}(b, c) gcd(b,c)

gcd ( a , c ) = ∏ p p min ⁡ ( α p , γ p ) \text{gcd}(a, c) = \prod_{p} p^{\min(\alpha_p, \gamma_p)} gcd(a,c)=ppmin(αp,γp)

gcd ( b , c ) = ∏ p p min ⁡ ( β p , γ p ) \text{gcd}(b, c) = \prod_{p} p^{\min(\beta_p, \gamma_p)} gcd(b,c)=ppmin(βp,γp)

然后,计算 lcm ( gcd ( a , c ) , gcd ( b , c ) ) \text{lcm}(\text{gcd}(a, c), \text{gcd}(b, c)) lcm(gcd(a,c),gcd(b,c))

lcm ( gcd ( a , c ) , gcd ( b , c ) ) = ∏ p p max ⁡ ( min ⁡ ( α p , γ p ) , min ⁡ ( β p , γ p ) ) \text{lcm}(\text{gcd}(a, c), \text{gcd}(b, c)) = \prod_{p} p^{\max(\min(\alpha_p, \gamma_p), \min(\beta_p, \gamma_p))} lcm(gcd(a,c),gcd(b,c))=ppmax(min(αp,γp),min(βp,γp))

比较两边的素因数分解

现在,我们需要证明:

∏ p p min ⁡ ( max ⁡ ( α p , β p ) , γ p ) = ∏ p p max ⁡ ( min ⁡ ( α p , γ p ) , min ⁡ ( β p , γ p ) ) \prod_{p} p^{\min(\max(\alpha_p, \beta_p), \gamma_p)} = \prod_{p} p^{\max(\min(\alpha_p, \gamma_p), \min(\beta_p, \gamma_p))} ppmin(max(αp,βp),γp)=ppmax(min(αp,γp),min(βp,γp))

由于素因数分解的唯一性,我们只需要证明对于每一个素数 p p p,指数部分相等即可:

min ⁡ ( max ⁡ ( α p , β p ) , γ p ) = max ⁡ ( min ⁡ ( α p , γ p ) , min ⁡ ( β p , γ p ) ) \min(\max(\alpha_p, \beta_p), \gamma_p) = \max(\min(\alpha_p, \gamma_p), \min(\beta_p, \gamma_p)) min(max(αp,βp),γp)=max(min(αp,γp),min(βp,γp))

证明指数部分相等

我们需要证明:

min ⁡ ( max ⁡ ( α p , β p ) , γ p ) = max ⁡ ( min ⁡ ( α p , γ p ) , min ⁡ ( β p , γ p ) ) \min(\max(\alpha_p, \beta_p), \gamma_p) = \max(\min(\alpha_p, \gamma_p), \min(\beta_p, \gamma_p)) min(max(αp,βp),γp)=max(min(αp,γp),min(βp,γp))

为了简化符号,设:

x = α p , y = β p , z = γ p x = \alpha_p, \quad y = \beta_p, \quad z = \gamma_p x=αp,y=βp,z=γp

则我们需要证明:

min ⁡ ( max ⁡ ( x , y ) , z ) = max ⁡ ( min ⁡ ( x , z ) , min ⁡ ( y , z ) ) \min(\max(x, y), z) = \max(\min(x, z), \min(y, z)) min(max(x,y),z)=max(min(x,z),min(y,z))

分析不同情况

为了证明上述等式,我们可以考虑 x x x, y y y, z z z 之间的大小关系。由于 max ⁡ \max max min ⁡ \min min 函数的对称性,我们可以假设 x ≤ y x \leq y xy 而不失一般性。因此,我们有以下几种情况:

  1. 情况一 z ≤ x ≤ y z \leq x \leq y zxy
  2. 情况二 x ≤ z ≤ y x \leq z \leq y xzy
  3. 情况三 x ≤ y ≤ z x \leq y \leq z xyz

我们逐一分析这些情况。

情况一: z ≤ x ≤ y z \leq x \leq y zxy
  • max ⁡ ( x , y ) = y \max(x, y) = y max(x,y)=y

  • min ⁡ ( max ⁡ ( x , y ) , z ) = min ⁡ ( y , z ) = z \min(\max(x, y), z) = \min(y, z) = z min(max(x,y),z)=min(y,z)=z (因为 z ≤ y z \leq y zy

  • min ⁡ ( x , z ) = z \min(x, z) = z min(x,z)=z (因为 z ≤ x z \leq x zx

  • min ⁡ ( y , z ) = z \min(y, z) = z min(y,z)=z (因为 z ≤ y z \leq y zy

  • max ⁡ ( min ⁡ ( x , z ) , min ⁡ ( y , z ) ) = max ⁡ ( z , z ) = z \max(\min(x, z), \min(y, z)) = \max(z, z) = z max(min(x,z),min(y,z))=max(z,z)=z

因此,两边相等。

情况二: x ≤ z ≤ y x \leq z \leq y xzy
  • max ⁡ ( x , y ) = y \max(x, y) = y max(x,y)=y

  • min ⁡ ( max ⁡ ( x , y ) , z ) = min ⁡ ( y , z ) = z \min(\max(x, y), z) = \min(y, z) = z min(max(x,y),z)=min(y,z)=z (因为 z ≤ y z \leq y zy

  • min ⁡ ( x , z ) = x \min(x, z) = x min(x,z)=x (因为 x ≤ z x \leq z xz

  • min ⁡ ( y , z ) = z \min(y, z) = z min(y,z)=z (因为 z ≤ y z \leq y zy

  • max ⁡ ( min ⁡ ( x , z ) , min ⁡ ( y , z ) ) = max ⁡ ( x , z ) = z \max(\min(x, z), \min(y, z)) = \max(x, z) = z max(min(x,z),min(y,z))=max(x,z)=z

因此,两边相等。

情况三: x ≤ y ≤ z x \leq y \leq z xyz
  • max ⁡ ( x , y ) = y \max(x, y) = y max(x,y)=y

  • min ⁡ ( max ⁡ ( x , y ) , z ) = min ⁡ ( y , z ) = y \min(\max(x, y), z) = \min(y, z) = y min(max(x,y),z)=min(y,z)=y (因为 y ≤ z y \leq z yz

  • min ⁡ ( x , z ) = x \min(x, z) = x min(x,z)=x (因为 x ≤ z x \leq z xz

  • min ⁡ ( y , z ) = y \min(y, z) = y min(y,z)=y (因为 y ≤ z y \leq z yz

  • max ⁡ ( min ⁡ ( x , z ) , min ⁡ ( y , z ) ) = max ⁡ ( x , y ) = y \max(\min(x, z), \min(y, z)) = \max(x, y) = y max(min(x,z),min(y,z))=max(x,y)=y

因此,两边相等。

结论

通过以上三种情况的分析,我们发现对于任意非负整数 x x x, y y y, z z z,都有:

min ⁡ ( max ⁡ ( x , y ) , z ) = max ⁡ ( min ⁡ ( x , z ) , min ⁡ ( y , z ) ) \min(\max(x, y), z) = \max(\min(x, z), \min(y, z)) min(max(x,y),z)=max(min(x,z),min(y,z))

因此,原等式成立:

gcd ( lcm ( a , b ) , c ) = lcm ( gcd ( a , c ) , gcd ( b , c ) ) \text{gcd}(\text{lcm}(a, b), c) = \text{lcm}(\text{gcd}(a, c), \text{gcd}(b, c)) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c))

最终答案

通过素因数分解和分情况讨论,我们证明了:

gcd ( lcm ( a , b ) , c ) = lcm ( gcd ( a , c ) , gcd ( b , c ) ) \text{gcd}(\text{lcm}(a, b), c) = \text{lcm}(\text{gcd}(a, c), \text{gcd}(b, c)) gcd(lcm(a,b),c)=lcm(gcd(a,c),gcd(b,c))

你可能感兴趣的:(最大公因数,最小公倍数)