完全 背包

题目

完全 背包_第1张图片

二维数组解法

1、确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品,每个物品可以取无限次,放进容量为j的背包,价值总和最大是多少

2、确定递推公式

依然拿dp[1][4]的状态来举例:

求取 dp[1][4] 有两种情况:放物品1还是不放物品1

如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。

如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。

容量为1,只考虑放物品0 和物品1 的最大价值是 dp[1][1],此时这里与0-1背包不同的地方;

在完全背包中,物品是可以放无限个,所以 即使空出物品1空间重量,那背包中也可能还有物品1,所以此时我们依然考虑放 物品0 和 物品1 的最大价值即: dp[1][1], 而不是 dp[0][1]

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)

dp[1][4] = max(dp[0][4], dp[1][1] + 物品1 的价值)

以上过程,抽象化如下:

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。

  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递推公式: dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);

(注意,完全背包二维dp数组 和 01背包二维dp数组 递推公式的区别,01背包中是 dp[i - 1][j - weight[i]] + value[i])

3、dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0

完全 背包_第2张图片

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]); 可以看出有一个方向 i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

j >= weight[0]时,dp[0][j] 如果能放下weight[0]的话,就一直装,每一种物品有无限个

完全 背包_第3张图片

4、确定遍历顺序

01背包二维DP数组,先遍历物品还是先遍历背包都是可以的。

因为两种遍历顺序,对于二维dp数组来说,递推公式所需要的值,二维dp数组里对应的位置都有

5、举例推导dp数组

以本篇举例数据为例,填满了dp二维数组如图:

完全 背包_第4张图片

因为 物品0 的性价比是最高的,而且 在完全背包中,每一类物品都有无限个,所以有无限个物品0,既然物品0 性价比最高,当然是优先放物品0。

运行代码:

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int bagWeight = scanner.nextInt();

        int[] weight = new int[n];
        int[] value = new int[n];

        for (int i = 0; i < n; i++) {
            weight[i] = scanner.nextInt();
            value[i] = scanner.nextInt();
        }

        int[][] dp = new int[n][bagWeight + 1];

        // 初始化
        for (int j = weight[0]; j <= bagWeight; j++) {
            dp[0][j] = dp[0][j - weight[0]] + value[0];
        }

        // 动态规划
        for (int i = 1; i < n; i++) {
            for (int j = 0; j <= bagWeight; j++) {
                if (j < weight[i]) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
                }
            }
        }

        System.out.println(dp[n - 1][bagWeight]);
        scanner.close();
    }
}

#Go
#Python
def knapsack(n, bag_weight, weight, value):
    dp = [[0] * (bag_weight + 1) for _ in range(n)]

    # 初始化
    for j in range(weight[0], bag_weight + 1):
        dp[0][j] = dp[0][j - weight[0]] + value[0]

    # 动态规划
    for i in range(1, n):
        for j in range(bag_weight + 1):
            if j < weight[i]:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i])

    return dp[n - 1][bag_weight]

# 输入
n, bag_weight = map(int, input().split())
weight = []
value = []
for _ in range(n):
    w, v = map(int, input().split())
    weight.append(w)
    value.append(v)

# 输出结果
print(knapsack(n, bag_weight, weight, value))

你可能感兴趣的:(算法)