- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
Java八股文
python人工智能开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- 世界人工智能大会在即,中国AI布局展现多重深意
未来智慧谷
人工智能世界人工智能大会(WAIC)
2025年世界人工智能大会(WAIC)将于7月26日至28日在上海举行。本次大会以“智能时代同球共济”为主题,展览面积首次突破7万平方米,汇聚了来自30余个国家和地区的1200余位嘉宾,其中包括12位图灵奖、诺贝尔奖得主及80余位中外院士。这一全球性平台的搭建,揭示了中国在人工智能领域深化发展的战略路径。技术展示:从模型开源到终端落地本届大会将呈现3000余项前沿展品,涵盖40余款大模型、60余款
- 全面学习 OpenAI API:从 Python 教程到 API Key 使用详解,快速上手调用和部署
我的学校你进不来
学习python开发语言人工智能语言模型深度学习
说在前面我们正身处在人工智能迅猛发展的时代,OpenAIAPI无疑是其中的翘楚,它提供了强大的工具,让开发者能够创建智能应用程序。然而,对于许多刚接触这个领域的开发者来说,如何开始使用OpenAIAPI可能是一个不小的挑战。这篇文章旨在全面介绍如何从零开始学习和使用OpenAIAPI,从申请APIKey到在Python中调用和部署,助力你快速上手并实现在项目中的应用。在接下来的内容中,我们将详细阐
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- Rust实现FasterR-CNN目标检测全流程
KENYCHEN奉孝
rustPolars
使用Rust和FasterR-CNN进行目标检测FasterR-CNN是目标检测领域广泛使用的深度学习模型。Rust生态中可以通过tch-rs(Torch绑定)调用预训练的PyTorch模型实现。以下为完整实现步骤:环境准备安装Rust和必要的依赖:cargoaddtchcargoaddanyhow#错误处理下载预训练的FasterR-CNN模型(需PyTorch格式.pt文件),或使用Torch
- RK3576 Yolo 部署
1.开发背景Ubuntu下实现yolo计算比较常见,现实中我们需要在各种嵌入式板卡上实现yolo模型,在板卡上运行yolo也是常态。主要参考官方github和野火教程。2.开发需求在RK3576上运行yolov8的官方例程3.开发环境Ubuntu20.04+Conda+Yolov8+RK35764.实现步骤4.1PyTorch文件转ONNX4.1.1下载权重文件下载官方权重文件yolov8n.pt
- Hamiltonian Transformer理论:融合哈密顿力学与Transformer架构的新范式
墨顿
transformer架构深度学习
HamiltonianTransformer理论是一种将经典哈密顿力学原理与现代Transformer架构相结合的新型神经网络范式。这一理论框架试图解决当前深度学习模型在效率、动态系统建模和长期依赖处理等方面的核心挑战。本文将系统梳理HamiltonianTransformer的理论基础、关键创新点、实现方法以及应用前景,并分析其相对于传统Transformer架构的优势与潜在限制。哈密顿力学与T
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- 【深度学习pytorch-6】张量与numpy相互转换
超华东算法王
DL-pytorch深度学习pytorchnumpy
张量与Numpy数组之间的互相转换在深度学习中,张量(tensor)和Numpy数组(numpyarray)是两种常见的数据结构。张量通常用于深度学习框架(如PyTorch、TensorFlow等),而Numpy数组在科学计算中被广泛使用。为了便于数据处理和计算,常常需要在它们之间进行转换。下面介绍张量和Numpy数组之间的互相转换。1.PyTorch张量与Numpy数组的互相转换PyTorch提
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- NumPy 或 PyTorch/TensorFlow 中的张量理解
栖霖涧
numpypytorchtensorflow
(2,2,3)形状的3D数组(或张量)的结构。个人理解:2个2维数组(张量),2维数组(张量)里面有2个1维向量(张量),1维向量(张量)里面有3个元素。注:由于最后一个维度值3代表的是元素个数,左侧括号后的第1个2代表的是第n-1个[(中括号,即n-1维数组)的数量,左侧括号后的第2个2代表的是第n-2个[(中括号,即n-2维数组)的数量。这段文字中,n代表的是数组的维度,这里是3维。维度解析:
- topk------提取张量极值的关键函数
AI扶我青云志
人工智能
torch.topk()是PyTorch中用于高效提取张量极值的关键函数,可返回指定维度上最大或最小的k个元素及其索引。以下从参数、作用和应用场景三方面详解:一、核心参数详解函数签名:torch.topk(input,k,dim=None,largest=True,sorted=True,*,out=None)参数类型默认值说明inputTensor必填输入张量kint必填需返回的元素数量dimi
- PyTorch 知识点总结 -- 第 1 节
朝野星夜
读书笔记-计算机类pytorch人工智能python
第1节PyTorchFundamentals本节主要讲解PyTorch中的基本单位Tensor(也称为张量),及一系列与Tensor有关的函数。Tensor、维度与形状函数作用举例输出结果结果描述torch.tensor()创建一个Tensor对象-torch.tensor(7)-torch.tensor([7,7])-tensor(7)-tensor([7,7])将数值7和一维数组[7,7]转换
- 探索《非官方知乎 API》:解锁知乎数据潜能指南
探索《非官方知乎API》:解锁知乎数据潜能指南Unofficial-Zhihu-API深度学习模型自动识别验证码,python爬虫库自动管理会话,通过简单易用的API,实现知乎数据的爬取项目地址:https://gitcode.com/gh_mirrors/un/Unofficial-Zhihu-API项目介绍非官方知乎API是一个由社区贡献的开源工具,位于https://github.com/l
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 通义灵码+DeepSeek:国产代码生成王炸组合,带你飞!
引言在人工智能飞速发展的当下,AI代码生成工具如雨后春笋般涌现,为开发者们带来了前所未有的编程体验。其中,国产的通义灵码结合DeepSeek模型异军突起,成为众多开发者关注的焦点。它们凭借强大的功能和出色的表现,在代码生成领域崭露头角,不仅提升了开发效率,还为编程工作流注入了新的活力。然而,如同任何新兴技术一样,在使用过程中也会遇到各种问题和挑战。本文将通过实测,深入剖析通义灵码与DeepSeek
- uni-app 多端开发中 AI 的集成与适配:一次开发,智能多端运行
欧阳天羲
大前端与AI的深度融合#AI与大前端框架结合篇uni-app人工智能前端
一、引言:uni-app与AI多端集成的背景在当今跨平台开发趋势下,uni-app凭借"一次编写,多端运行"的特性成为企业级应用开发的首选框架之一。随着人工智能技术的普及,将AI能力集成到多端应用中已成为提升用户体验的关键需求。然而,小程序、APP、Web等不同端的运行环境差异显著,如何实现AI功能的统一集成与高效适配成为开发难点。本文将系统讲解在uni-app框架中集成AI能力的完整方案,涵盖跨
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- 免费学中医,这些优质资源不容错过
少林659
零基础学中医免费学中医
零基础学中医,学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts想入门中医却担心成本太高?其实有不少免费又优质的学习资源,问止中医的系列免费课程就是其中的佼佼者,涵盖理论与实操,满足不同学习者的需求。问止中医旗下的精一书院,是免费学中医的绝佳平台。由问止中医联合创始人林大栋博士主讲,课程聚焦中医结构分析、人工智能中医大脑技术
- 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
司南锤
LLM人工智能
引言在人工智能快速发展的今天,大语言模型(LLM)的推理能力一直是研究的热点。从最初的直接问答,到链式思维(ChainofThoughts,CoT)的出现,再到如今的思维树(TreeofThoughts,TOT),AI的推理方式正在变得越来越接近人类的思维过程。思维树作为一种全新的推理框架,不仅继承了链式思维的优势,更通过树状结构的探索和回溯机制,实现了更加复杂和深入的推理过程。本文将深入探讨TO
- 【深度学习-Day 33】从零到一:亲手构建你的第一个卷积神经网络(CNN)
吴师兄大模型
深度学习入门到精通深度学习cnn人工智能python大模型卷积神经网络(CNN)机器学习
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- AttributeError: module ‘openai‘ has no attribute ‘ChatCompletion‘解决方案
爱编程的喵喵
Python基础课程pythonAttributeErroropenaiChatCompletion解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了AttributeError:mod
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,