程序示例精选
Python+Pytorch掌纹训练识别
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!
这篇博客针对《Python+Pytorch掌纹训练识别》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。
一、所需工具软件
二、使用步骤
1. 主要代码
2. 运行结果
三、在线协助
1. Python
2. Pycharm
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
from models import MyDataset
from models import compnet
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('\ndevice-> ', device, '\n\n')
test_set = './data/test.txt'
testset =MyDataset(txt=test_set, transforms=None, train=False)
batch_size = 1
data_loader_test = DataLoader(dataset=testset, batch_size=batch_size, shuffle=False)
net = compnet(num_classes=600) # IITD: 460 KTU: 145 Tongji: 600 REST: 358 XJTU: 200
#net.load_state_dict(torch.load('./pretrained models/net_params.pth'))
net.load_state_dict(torch.load('./pretrained models/net_params_best.pth'))
net.to(device)
net.eval()
# feature extraction:
featDB_test = []
iddb_test = []
with torch.no_grad():
for batch_id, (data, target) in enumerate(data_loader_test):
data = data.to(device)
target = target.to(device)
# feature extraction
codes = net.getFeatureCode(data)
codes = codes.cpu().detach().numpy()
y = target.cpu().detach().numpy()
if batch_id == 0:
featDB_test = codes
iddb_test = y
else:
featDB_test = np.concatenate((featDB_test, codes), axis=0)
iddb_test = np.concatenate((iddb_test, y))
print('completed feature extraction for test set.')
print('(number of samples, feature vector dimensionality): ', featDB_test.shape)
print('\n')
# feature matching: feat1 vs feat2
cosdis =np.dot(feat1,feat2)
dis = np.arccos(np.clip(cosdis, -1, 1))/np.pi # 0~1
print('matching distance, label1 vs label2: \t%.2f, %d vs %d'%(dis, iddb_test[0], iddb_test[1]))
# feature matching: feat1 vs feat3
cosdis =np.dot(feat1,feat3)
dis = np.arccos(np.clip(cosdis, -1, 1))/np.pi
print('matching distance, label1 vs label3: \t%.2f, %d vs %d'%(dis, iddb_test[0], iddb_test[-1]))
# Match label1 with all other samples
# Match label1 with all other samples
feat1 = featDB_test[0] # Feature vector of label1
label1 = iddb_test[0] # Label of the first sample
for i in range(1, len(featDB_test)):
feat_other = featDB_test[i] # Feature vector of the other sample
label_other = iddb_test[i] # Label of the other sample
# Compute cosine similarity and convert to distance
cosdis = np.dot(feat1, feat_other)
dis = np.arccos(np.clip(cosdis, -1, 1)) / np.pi # Distance in [0, 1]
1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作
当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog
博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445
Python+Yolov5道路障碍物识别:https://blog.csdn.net/alicema1111/article/details/129589741
Python+Yolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别:https://blog.csdn.net/alicema1111/article/details/129272048