- RICE模型或KANO模型在具体UI评审时的运用经验
Alex艾力的IT数字空间
设计规范前端框架原型模式产品经理需求分析ux制造
模型是抽象的产物,结合场景才好说明(数据为非精确实际数据,仅供参考,勿照搬)。案例一:RICE模型解决「支付流程优化」vs「首页动效升级」优先级争议背景:APP电商模块在迭代中面临两个需求冲突——支付团队主张优化支付失败提示(减少用户流失),设计团队提议增加首页3D商品动效(提升视觉吸引力)。双方争执不下。应用过程:RICE模型量化评估(参考):支付优化:Reach(覆盖人数):支付流程涉及100
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,Sequential Chain详解 ?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十五
- 区块链重构信任链:跨境电商代购如何用代码破解“假货-失联-物流造假”困局?
Joe13265449558
跨境电商独立站无货源自建站代购系统
区块链技术如何解决跨境电商代购的信任与溯源难题?在跨境电商代购市场年增速达28%的背景下,消费者对商品真伪、物流透明度和支付安全性的质疑却与日俱增。2024年,中国消费者协会数据显示,跨境电商代购投诉量同比激增187%,其中"货不对板""物流造假""付款后失联"成为三大核心痛点。区块链技术凭借其去中心化、不可篡改和智能合约等特性,正在重构跨境电商代购的信任体系,为行业提供从商品生产到交付的全链路解
- 【机器学习|学习笔记】组合特征(Feature Combinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络深度学习
【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。文章目录【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达
- 展锐 ISP 模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析
展锐ISP模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析关键词:展锐ISP、图像信号处理、3DNR、HDR合成、YUV输出、图像管线、降噪算法、调色引擎、应用场景评估、移动终端影像系统摘要:作为国产SoC平台中的关键影像处理核心,展锐ISP(ImageSignalProcessor)聚焦轻量化、低功耗与快速集成三大特性,广泛应用于中低端移动终端、AIoT摄像头及定制化影像设备。相较于
- 19|Whisper+ChatGPT:请AI代你听播客
_Rye_
AI大模型whisperchatgpt
今天,我们的课程开始进入一个新的主题了,那就是语音识别。过去几周我们介绍的ChatGPT虽然很强大,但是只能接受文本的输入。而在现实生活中,很多时候我们并不方便停下来打字。很多内容比如像播客也没有文字版,所以这个时候,我们就需要一个能够将语音内容转换成文本的能力。作为目前AI界的领导者,OpenAI自然也不会放过这个需求。他们不仅发表了一个通用的语音识别模型Whisper,还把对应的代码开源了。在
- 网络资源模板--基于Android Studio 实现的喝水提醒App
编程乐学
Android网络项目模板androidstudioandroidide安卓大作业移动端开发大作业喝水提醒
目录一、测试环境说明二、项目简介三、项目演示四、部设计详情(部分)注册页面首页统计页五、项目源码一、测试环境说明二、项目简介本应用采用经典的MVC(Model-View-Controller)架构,将数据模型(Model)、视图(View)和控制器(Controller)分离,提高代码的可维护性和可扩展性。Model:负责数据的存储和处理,包括用户信息、饮水记录等。使用Room数据库来实现数据的持
- Xtuner:大模型微调快速上手
潘达斯奈基~
AIGCAIGC
一、XTuner是什么?简单来说,XTuner是一个轻量级、易于使用的、为大语言模型(LLM)设计的微调工具库。它由上海人工智能实验室(OpenMMLab)开发,是其强大AI工具生态(MMCV,MMEngine等)的一部分。它的核心设计理念是“用一个配置文件搞定一切”,让开发者和研究人员可以极大地简化微调流程。二、为什么选择XTuner?(核心优势)轻量且用户友好:命令行驱动:你不需要编写复杂的训
- 聊聊JVM如何优化
首先应该明确的是JVM调优不是常规手段,JVM的存在本身就是为了减轻开发对于内存管理的负担,当出现性能问题的时候第一时间考虑的是代码逻辑与设计方案,以及是否达到依赖中间件的瓶颈,最后才是针对JVM进行优化。1.JVM内存模型针对JAVA8的模型进行讨论,JVM的内存模型主要分为几个关键区域:堆、方法区、程序计数器、虚拟机栈和本地方法栈。堆内存进一步细分为年轻代、老年代,年轻代按其特性又分为E区,S
- YOLO融合synergisticNet中的模块
今天炼丹了吗
YOLOv11与自研模型专栏YOLO
YOLOv11v10v8使用教程:YOLOv11入门到入土使用教程YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总《HyperSINet:ASynergeticInteractionNetworkCombinedWithConvolutionandTransformerforHyperspectralImageClassification》一、模块介绍论文链接:https://ieeex
- AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AgenticAI实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战关键词:人工智能、身体增强、道德考虑、未来发展、机遇挑战摘要:本文将探讨AI时代人类增强的各个方面,包括道德考虑和身体增强技术的未来发展机遇与挑战。通过详细分析AI技术基础、身体增强技术、道德哲学及社会影响,本文旨在为读者提供对这一前沿领域的深入理解和前瞻性思考。目录大纲AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战
- 【前端】【数字孪生】基础知识:数字孪生 3D 模型去哪里找?Three.js 辅助组件库有哪些?模型的动画是黑盒吗?怎么控制?
患得患失949
数字孪生前端3djavascript
前端数字孪生全解:Vue与Three.js的最佳实践、3D模型网站推荐、自带动画控制详解在数字孪生(DigitalTwin)和三维可视化逐渐成为前端热点的今天,很多开发者开始转向WebGL+前端框架的集成实践,最常见的组合包括:React+Three.js(通过@react-three/fiber与@react-three/drei)Vue+Three.js(本文重点)本文将从以下几个维度全面解析
- 工业显示器五大品牌推荐及分析
Jwest2021
计算机外设
在智能制造与工业自动化中,工业显示器扮演着至关重要的角色,最近好多朋友问我有没有什么卖工业显示的厂家推荐。那今天我为大家整理了5个工业显示器厂家品牌推荐,希望可以帮助您挑选到合适的工业显示器一、佳维视(JAWEST)深圳市佳维视电子科技有限公司(JAWEST)成立于2012年,是集研发、生产、销售、服务为一体的工业级显控设备及解决方案供应商。公司在深圳拥有超12000㎡产研基地,透过持续的研发和技
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 5G MEC四大核心挑战技术解析报告
码农老gou
5G5G网络
一、MEC园区部署挑战:数据本地化与低时延接入痛点深度解析数据不出园区:工业质检、医疗影像等敏感业务需数据在本地闭环处理。但运营商基站与企业MEC间若经公网绕行,时延超50ms且存在泄露风险。L2网络局限:传统L2接入网无法实现基站→UPF的智能路由,导致业务流绕行城域网核心节点(平均增加20ms时延)。创新解决方案▍最短路径转发架构(图1)
- 5G与边缘计算融合架构:核心能力下沉与网络切片技术解析
码农老gou
5G5G边缘计算架构
15G核心能力下沉的技术逻辑在数字化转型浪潮中,网络架构正经历从中心化向分布式模式的根本性变革。5G网络与边缘计算的深度融合正在重构下一代智能连接架构,其核心在于将传统的中心化网络能力下沉至边缘节点,形成分布式算力网络。这种架构转型源于对超低时延、高带宽和海量连接的业务需求,驱动网络基础设施向用户侧靠拢,实现计算与通信的无缝融合。1.1分布式架构转型需求5G三大核心能力——增强移动宽带(eMBB)
- 邻近巷道爆破振动模拟与可视化:计算力学的工程应用
碳酸的唐
动态规划数学建模
引言隧道爆破施工是现代工程建设中常用的方法,但爆破产生的振动会对周围结构和地质环境产生影响。本文介绍一个基于Python的邻近巷道爆破振动模拟系统,该系统通过数值计算模拟爆破引起的应力波传播过程,并提供多种可视化方式展示振动效应。本研究对于理解爆破振动机理、评估爆破安全距离以及优化爆破参数具有重要意义。理论基础爆破应力波传播模型爆破引起的应力波在岩体中的传播可通过弹性波动理论描述。在均匀介质中,应
- 喜讯 | Navicat 蝉联 2025 年 DBTA 100 强名单
Navicat中国
Navicat17焕新上市navicat数据库
Navicat在“DBTA1002025-数据领域最重要的公司”榜单中获得表彰。该奖项旨在表彰在数据管理与分析领域的领先创新者。数据库趋势与应用集团出版人TomHogan表示:“企业正寻求扩大人工智能的应用范围,采用新的技术与应用,增加数据分析/商业智能的使用,并对现有应用进行现代化改造”,“每年,《数据库趋势与应用》杂志都会推出DBTA100榜单,旨在表彰具有创新精神、能够为客户带来新产品新体验
- 分布式数据库设计——分布式数据库的基础概念
庄小焱
数据库域数据库
摘要分布式数据库设计系列将分为四个大的部分。将从以下四方面让大家对分布式数据库的设计和使用有深入的理解。模块一,分布式数据历史演变及其核心原理。从历史背景出发,讲解了分布式数据库要解决的问题、应用场景,以及核心技术特点。模块二,分布式数据库的高性能保证——存储引擎。这是专栏的亮点内容,简要展示了现代数据库的存储引擎,比如典型存储引擎、分布式索引、数据文件与日志结构存储、事务处理。其中,我会特别介绍
- 租户订阅、套餐切换与服务启停全流程设计:SaaS 计费引擎与运营控制体系实战解析
观熵
企业级SaaS架构与工程实战全流程SaaS架构
租户订阅、套餐切换与服务启停全流程设计:SaaS计费引擎与运营控制体系实战解析关键词多租户订阅系统、SaaS套餐管理、服务启停机制、计费周期控制、套餐额度配置、权限策略切换、租户状态机、运营控制后台、资源配额调节、合约期与续订策略摘要在企业级SaaS系统中,租户订阅与套餐管理机制不仅决定平台的盈利模型,更直接关系到权限控制、资源分配、服务启停等系统级行为。传统CRM或权限表驱动的权限体系难以支撑“
- 校招秋招,最佳的准备时间、时间线和关键节点
Luntu
www.zxgj.cn求职招聘职场和发展面试
不论想要做成什么事,一定要提前去筹谋筹划,没有计划就难以达到好的目标,有因有果,在别人拿到满意的offer时,焉知不是别人付出的更多,筹划的更加周密周全呢。校招秋招是应届毕业生最重要的就业渠道,错过这波等于错过了一大半的时机。所以这里提示各位即将毕业的同学,务必要关注秋招的时间节点信息,提前做好准备工作。小猫测试网,秋招春招,网申在线测评(训练题库)3~6月储备与定位期应届毕业生如果想在秋招进入心
- SaaS 的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析
SaaS的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析关键词SaaS计费模型、按量计费、用户数计费、功能模块计费、订阅管理、计费系统架构、账单系统、分级定价、后付费、使用量追踪摘要在企业级SaaS系统架构中,计费模型不仅关系到产品商业化路径的可行性,还直接决定了系统架构、数据采集与账务合规的设计逻辑。本文将深入解析三种主流SaaS订阅计费模式:按量计费(Usage-based)
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- 【pytorch】——Could not export Python function call ‘Scatter‘
pytorch用pytorch的trace导出模型的时候,报错errorRuntimeError:CouldnotexportPythonfunctioncall'Scatter'.RemovecallstoPythonfunctionsbeforeexport.Didyouforgettoadd@scriptor@script_methodannotation?Ifthisisann.Modul
- 基于评估方法论评估一个大模型的准确度
尤物程序猿
自动化运维
评估标准先来说说什么是大模型的一个准确度,指其输出结果与真实值或期望值之间的符合程度,但在不同任务和场景下具体定义和评估方式存在显著差异。要评估一个大模型还得考虑到评估哪些方面呢?以下是大概的几个方向任务类型准确度定义分类任务预测类别与真实标签的一致性生成任务生成内容的真实性/流畅性/相关性问答任务答案的事实正确性和完整性多模态任务跨模态对齐能力(如图文匹配)除了以上几个方面还需要考虑表面匹配:字
- 物联网零售领域AI算力网络与通信的应用探索
AI算力网络与通信
物联网零售人工智能ai
物联网零售领域AI算力网络与通信的应用探索关键词:物联网、零售领域、AI算力网络、通信、应用探索摘要:本文聚焦于物联网零售领域,深入探讨了AI算力网络与通信的应用。首先介绍了相关背景,包括目的、预期读者等。接着对核心概念进行解释,阐述它们之间的关系并给出原理架构示意图和流程图。然后详细讲解核心算法原理、数学模型与公式,通过项目实战展示代码案例及解读。还介绍了实际应用场景、推荐相关工具资源,分析未来
- AI原生应用必知:5大高效多轮对话框架对比
AI原生应用开发
AI-nativeeasyui前端ai
AI原生应用必知:5大高效多轮对话框架对比关键词:AI原生应用、多轮对话、对话框架、自然语言处理、上下文管理、意图识别、对话状态跟踪摘要:本文深入探讨了构建AI原生应用时必备的5大多轮对话框架,包括Rasa、Dialogflow、MicrosoftBotFramework、AmazonLex和IBMWatsonAssistant。通过对比分析它们的架构设计、核心功能和应用场景,帮助开发者选择最适合
- Kotlin 与移动开发的无缝对接秘籍
移动开发前沿
kotlin开发语言androidai
Kotlin与移动开发的无缝对接秘籍关键词:Kotlin、移动开发、Android、iOS、跨平台开发、协程、JetpackCompose摘要:本文深入解析Kotlin在移动开发领域的核心优势与实践方法,通过剖析Kotlin语言特性、跨平台架构、与原生生态的深度集成(如AndroidJetpack和iOSSwift互操作)、异步编程模型(协程)等关键技术,结合完整的项目实战案例,展示如何利用Kot
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 探索AI人工智能领域多智能体系统的技术原理
AI大模型应用之禅
人工智能网络ai
探索AI人工智能领域多智能体系统的技术原理关键词:AI人工智能、多智能体系统、技术原理、智能体交互、分布式计算摘要:本文深入探索了AI人工智能领域多智能体系统的技术原理。首先介绍了多智能体系统的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了多智能体系统的核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。详细讲解了核心算法原理,结合Python源代码进行说明,并给出了相关
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio