晶体结构满足SE(3)对称性(旋转+平移),传统CNN的平移不变性无法处理旋转对称性。等变神经网络满足:
f ( ρ i n ( g ) x ) = ρ o u t ( g ) f ( x ) f(\rho_{in}(g)x) = \rho_{out}(g)f(x) f(ρin(g)x)=ρout(g)f(x)
其中:
对于输入信号 f : R 3 → R d i n f: \mathbb{R}^3 \to \mathbb{R}^{d_{in}} f:R3→Rdin 和核 K : R 3 → R d o u t × d i n K: \mathbb{R}^3 \to \mathbb{R}^{d_{out} \times d_{in}} K:R3→Rdout×din,等变卷积定义为:
[ K ∗ f ] ( x ) = ∫ R 3 K ( y − 1 x ) f ( y ) d y [K * f](x) = \int_{\mathbb{R}^3} K(y^{-1}x)f(y)dy [K∗f](x)=∫R3K(y−1x)f(y)dy
需满足核约束条件:
K ( g x ) = ρ o u t ( g ) K ( x ) ρ i n ( g − 1 ) K(gx) = \rho_{out}(g)K(x)\rho_{in}(g^{-1}) K(gx)=ρout(g)K(x)ρin(g−1)
import torch
from e3nn import o3
from e3nn.nn import FullyConnectedNet
# 定义不可约表示
irreps_in = o3.Irreps("5x0e + 3x1o") # 5个标量+3个矢量
irreps_out = o3.Irreps("2x0e + 1x1e")
# 构建等变线性层
equivariant_linear = o3.Linear(
irreps_in=irreps_in,
irreps_out=irreps_out,
internal_weights=True,
shared_weights=False
)
# 全连接等变网络示例
model = torch.nn.Sequential(
equivariant_linear,
o3.NormActivation(irreps_out, act=torch.sigmoid),
FullyConnectedNet([irreps_out.dim, 64, 32], act=torch.relu)
)
def transform_coordinates(pos, rotation):
"""应用随机旋转增强数据"""
# pos: [N, 3] 原子坐标
# rotation: [3,3] SO(3)矩阵
return pos @ rotation.T
# 等变性验证
pos_rot = transform_coordinates(original_pos, random_rotation)
output_rot = model(feature_transform(pos_rot))
assert torch.allclose(output_rot, transform_output(original_output, random_rotation))
问题:传统DFT计算LiCoO₂结构需要10+小时
方案:构建等变GNN预测晶格参数与Li扩散路径
效果:
方法:结合等变网络与主动学习
流程:
参数 | 推荐范围 | 影响分析 |
---|---|---|
球谐波次数l_max | 2-4 | l_max=3时兼顾精度与速度 |
批大小 | 32-128 | 大batch需搭配LAMB优化器 |
学习率 | 3e-4 ~ 1e-3 | 使用OneCycle调度策略 |
# 使用Tensor Cores加速
torch.set_float32_matmul_precision('high')
# 混合精度训练
scaler = torch.cuda.amp.GradScaler()
with torch.autocast(device_type='cuda', dtype=torch.float16):
outputs = model(inputs)
loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
所有公式使用CSDN兼容的LaTeX格式:
$$ E = \frac{1}{2} \sum_{i \neq j} \phi(r_{ij}) $$
避免使用\begin{equation}等环境
参考文献
[1] Batzner et al. E(3)-equivariant graph neural networks for data-efficient materials modeling. Nature Communications 2022
[2] Gasteiger et al. Directional Message Passing for Molecular Graphs. ICLR 2023