IPW逆概率加权

IPW是个非常优雅的纠偏方法。下面介绍如何利用它来实现纠偏:

uplift定义如下:
τ ( x ) = E P ( Y ( 1 ) − Y ( 0 ) ∣ x ) μ 1 ( x ) = E P ( Y ∣ W = 1 , X = x ) μ 0 ( x ) = E P ( Y ∣ W = 0 , X = x ) τ ( x ) = μ 1 ( x ) − μ 0 ( x ) \begin{aligned} \tau(x) &= \mathbb{E}_{\mathbb{P}}(Y(1)-Y(0) \mid x) \\ \mu_1(x) &= \mathbb{E}_{\mathbb{P}}(Y \mid W=1, X=x) \\ \mu_0(x) &= \mathbb{E}_{\mathbb{P}}(Y \mid W=0, X=x) \\ \tau(x) &= \mu_1(x) - \mu_0(x) \end{aligned} τ(x)μ1(x)μ0(x)τ(x)=EP(Y(1)Y(0)x)=EP(YW=1,X=x)=EP(YW=0,X=x)=μ1(x)μ0(x)

ESN纠偏:
P ( Y , W = 1 ∣ X ) ⏟ E S T R = P ( Y ∣ W = 1 , X ) ⏟ T R ⋅ P ( W = 1 ∣ X ) ⏟ π = μ 1 ⋅ π P ( Y , W = 0 ∣ X ) ⏟ E S C R = P ( Y ∣ W = 0 , X ) ⏟ C R ⋅ P ( W = 0 ∣ X ) ⏟ 1 − π = μ 0 ⋅ ( 1 − π ) μ 1 = E S T R π μ 0 = E S C R 1 − π τ = μ 1 − μ 0 \begin{aligned} \underbrace{P(Y, W=1 \mid X)}_{E S T R} & =\underbrace{P(Y \mid W=1, X)}_{T R} \cdot \underbrace{P(W=1 \mid X)}_\pi \\ & =\mu_1 \cdot \pi \\ \underbrace{P(Y, W=0 \mid X)}_{E S C R} & =\underbrace{P(Y \mid W=0, X)}_{C R} \cdot \underbrace{P(W=0 \mid X)}_{1-\pi} \\ & =\mu_0 \cdot(1-\pi) \\ \mu_1 &= \frac{ESTR}{\pi} \\ \mu_0 &= \frac{ESCR}{1-\pi} \\ \tau &= \mu_1 - \mu_0 \end{aligned} ESTR P(Y,W=1X)ESCR P(Y,W=0X)μ1μ0τ=TR P(YW=1,X)π P(W=1X)=μ1π=CR P(YW=0,X)1π P(W=0X)=μ0(1π)=πESTR=1πESCR=μ1μ0


参考

  • DESCN: Deep Entire Space Cross Networks | 多任务、端到端、IPW的共舞

你可能感兴趣的:(营销,IPW)