>- ** 本文为[365天深度学习训练营]中的学习记录博客**
>- ** 原作者:[K同学啊]**
本人往期文章可查阅: 深度学习总结
要求:
拔高(可选):
我的环境:
如果设备上支持GPU就使用GPU,否则使用CPU
import torch
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
运行结果:
device(type='cpu')
import pathlib
data_dir='D:\THE MNIST DATABASE\P5-data'
data_dir=pathlib.Path(data_dir)
data_paths=list(data_dir.glob('*'))
classeNames=[str(path).split("\\")[3] for path in data_paths]
classeNames
运行结果:
['test', 'train']
import matplotlib.pyplot as plt
from PIL import Image
import os
#指定图像文件夹路径
image_folder=r'D:\THE MNIST DATABASE\P5-data\train\adidas'
#获取文件夹中的所有图像文件
image_files=[f for f in os.listdir(image_folder) if f.endswith((".jpg",".png",".jpeg"))]
#创建Matplolib图像
fig,axes=plt.subplots(3,8,figsize=(16,6))
#使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):
img_path=os.path.join(image_folder,img_file)
img=Image.open(img_path)
ax.imshow(img)
ax.axis('off')
#显示图像
plt.tight_layout()
plt.show()
运行结果:
import torchvision
from torchvision import transforms,datasets
train_transforms=transforms.Compose([
transforms.Resize([224,224]), #将输入图片resize成统一尺寸
transforms.RandomHorizontalFlip(), #随机水平翻转
transforms.ToTensor(), #将PIL Image或numpy.ndarry转换为tensor,并归一化到[0,1]
transforms.Normalize( #标准化处理-->转换为标准正态分布(高斯分布),使模型更容易收敛
mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225])
])
test_transforms=transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225])
])
train_dataset=datasets.ImageFolder(r"D:\THE MNIST DATABASE\P5-data\train",
transform=train_transforms)
test_dataset=datasets.ImageFolder(r"D:\THE MNIST DATABASE\P5-data\test",
transform=test_transforms)
train_dataset,test_dataset
运行结果:
(Dataset ImageFolder
Number of datapoints: 502
Root location: D:\THE MNIST DATABASE\P5-data\train
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
RandomHorizontalFlip(p=0.5)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
),
Dataset ImageFolder
Number of datapoints: 76
Root location: D:\THE MNIST DATABASE\P5-data\test