- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- Python知识点:如何使用Nvidia Jetson与Python进行边缘计算
杰哥在此
Python系列python边缘计算开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用NvidiaJetson与Python进行边缘计算NvidiaJetson平台是专为边缘计算设计的一系列AI计算机,它们能够处理和分析来自物联网(IoT)设备和边缘节点的数据。这些设备小巧、节能且功能强大,非常适合用于执行机器学习、计算机视觉和自然语言处理等任务。Python
- 在NVIDIA Jetson和RTX上运行Google DeepMind的Gemma 3N:多模态AI的边缘计算革命
扫地的小何尚
人工智能边缘计算GPUNVIDIAnlpcuda
在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命文章目录在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命引言:多模态AI进入边缘计算时代文章结构概览第一章:Gemma3N模型技术架构深度解析1.1Gemma3N模型概述与发展历程1.1.1模型架构的核心设计原则1.1.2多模态
- 边缘计算与 CDN 融合技术实践教程
快快网络-三七
云计算优化边缘计算人工智能
目录前言一、核心技术原理与架构设计1.1边缘计算与CDN协同架构1.2智能调度算法二、数据同步与一致性实现2.1边缘节点数据缓存机制2.2一致性哈希算法应用三、典型应用场景实践3.1实时视频直播优化3.2物联网数据处理四、部署与运维要点4.1容器化部署4.2监控与告警五、未来技术演进方向总结前言在互联网流量爆发式增长、低延迟应用场景不断涌现的背景下,边缘计算与CDN的融合已成为提升网络性能的核心技
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- Spring生态:云原生与AI的革新突破
ithadoop
springbootspringCloud人工智能spring云原生
Spring生态创新应用引言Spring生态系统作为Java企业级开发的核心框架,已被全球76%的Java开发者采用,通过模块化设计提供了完整的开发生命周期支持。其控制反转(IoC)和面向切面编程(AOP)两大核心特性显著降低了代码耦合度,使电商等复杂系统更容易扩展和维护。在云原生浪潮推动下,Spring生态通过技术创新持续优化微服务架构和响应式编程能力,并与AI、边缘计算等前沿技术深度融合,成为
- 高性能AI核心板Z3588CV1:基于瑞芯微RK3588的旗舰级解决方案——8K视觉处理 · 6TOPS NPU算力 · 多场景边缘计算
九鼎创展科技
嵌入式硬件边缘计算arm开发android
RK3588处理器技术细节计算单元CPU:4×
[email protected](大核集群)4×
[email protected](能效集群)支持ARMDynamIQ混合架构,可实现任务智能调度GPU:Mali-G610MP4,支持OpenGLES3.2/2.0/1.1、Vulkan1.28KVPU视频编解码:H.265/H.264/AV1格式,支持60fps实时处理NPU:6TOPS算力(INT
- 分布式电源采集控制装置:山东光伏电站的“智能中枢”
微机综合保护
分布式
在山东省构建新型电力系统的战略布局中,分布式光伏装机规模已突破30GW,占比超全国总量的15%。面对大规模光伏并网带来的调峰压力与电压波动挑战,分布式电源采集控制装置作为核心调控装备,通过实时监测、智能决策与多端协同,成为保障电网安全、提升新能源消纳的关键技术载体。一、核心功能:构建多维数据闭环全量数据采集与边缘计算装置通过高精度传感器实时采集光伏阵列的发电功率、逆变器效率、环境辐照度等参数。内置
- PCDN与边缘计算:流量处理的双赢方案
数据库
PCDN与边缘计算:流量处理的双赢方案在数字化时代,宽带流量的快速增长对传统网络架构提出了更高要求。视频、直播、云计算等应用消耗了大量带宽资源,如何高效、低成本地处理流量成为行业关注的重点。PCDN(Peer-to-PeerContentDeliveryNetwork)与边缘计算的结合,为流量优化提供了双赢解决方案。PCDN通过利用用户闲置带宽和存储资源,构建分布式网络,使内容分发更接近终端用户。
- 瑞芯微RK3288、RK3399、RK3568、RK3368芯片性能介绍与对比分析
不对法
硬件编程嵌入式硬件linux单片机mcu
目录标题RK3568RK3288RK3368RK3399RK3568是瑞芯微2020年底最新发布的一款定位中高端的通用型SoC,采用22nm工艺制程,支持Android11和Linux操作系统(Linux+qt/Fedora/Debian/Ubuntu),主要面向行业应用市场,如视频会议、智慧安防、商业显示、边缘计算、物联网网关、视频编解码等领域。集成4核arm架构A55处理器和MaliG522E
- 远程办公与协作新趋势:从远程桌面、VDI到边缘计算,打造高效、安全的混合办公环境
北极光SD-WAN组网
边缘计算安全人工智能
一、引言随着数字化转型的加速,越来越多的企业开始采用远程办公和混合办公模式,以提升员工的灵活性和企业的敏捷性。然而,异地办公也带来了诸如桌面环境不一致、安全风险增加、沟通协作效率降低等诸多挑战。因此,如何打造一致、安全且高效的远程办公环境,成为企业管理者急需破解的难题。本文将从远程桌面与虚拟桌面基础架构(VDI)、协作工具与平台集成、边缘计算在混合办公中的应用三个维度,分析如何构建一个高效、安全且
- SD-WAN在智慧工厂中的实践:云平台与边缘计算高效协作解析
北极光SD-WAN组网
边缘计算人工智能
随着工业4.0与智能制造的深入推进,智慧工厂成为现代制造业的重要发展方向。智慧工厂依托云计算与边缘计算协同处理海量数据,以实现生产过程的智能化。然而,云平台和边缘计算之间的数据传输对网络的可靠性、灵活性和实时性提出了更高要求。在此背景下,SD-WAN(软件定义广域网)技术成为解决这一问题的重要工具。本文将探讨SD-WAN技术在制造业中如何优化云平台与边缘计算的协作应用,分析其在智慧工厂场景下的具体
- 限流系列之五:TDMQ RabbitMQ Serverless 版限流机制深度解析与实践指南
腾讯云中间件
消息队列腾讯云rabbitmqserverless
导语分布式集群限流是保障云服务高可用性的核心技术手段,其意义不仅在于防止系统过载,更是构建弹性架构、优化资源效率、实现业务可持续性的关键策略。未来,随着边缘计算和Serverless的普及,限流技术将进一步与底层基础设施深度融合,成为构建下一代高可用架构的核心基石。腾讯云TDMQRabbitMQServerless版作为一款极致弹性、高性能且高可靠的消息中间件,通过提供稳定低延迟的消息服务,助力企
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 解析AI算力网络与通信领域强化学习的算法
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构人工智能网络算法ai
解析AI算力网络与通信领域强化学习的算法:从"快递员找路"到"智能网络大脑"关键词:AI算力网络、通信领域、强化学习、马尔可夫决策、资源调度摘要:本文将用"快递物流系统"的类比,带您理解AI算力网络与通信领域如何通过强化学习实现智能决策。我们会从核心概念讲起,逐步拆解强化学习在网络资源调度中的算法原理,结合Python代码实战,最后探索其在5G/6G、边缘计算等场景的应用。即使您没学过复杂数学,也
- 18、探索边缘计算与面向能力的架构
info6
边缘计算面向能力的架构COA
探索边缘计算与面向能力的架构1.边缘计算的定义与特性边缘计算是指在数据生成或消费的上下文中进行计算。这种计算方式与云计算有着本质的区别,云计算将计算资源与物理上下文解耦,以便在不同的场景中高效共享。边缘计算则紧密耦合于物理环境,旨在提供即时响应,处理现实世界的数据。边缘计算的关键特性边缘计算具有以下几个关键特性:上下文中的计算:边缘计算强调与物理世界的联系,响应物理世界的数据,通常旨在提供即时响应
- 深入解析PCDN:边缘计算与内容分发的结合
数据库
深入解析PCDN:边缘计算与内容分发的结合在当今数字化时代,互联网流量的快速增长对传统内容分发网络(CDN)提出了更高要求。为了优化宽带流量的分配、降低延迟并提升用户体验,PCDN(P2PCDN)应运而生,它结合了边缘计算与分布式内容分发技术,成为新一代网络加速方案。PCDN的核心原理PCDN的核心在于利用边缘节点的计算和存储能力,将内容分发下沉至靠近用户的终端设备。与传统的CDN依赖中心化服务器
- AI时代下的架构设计:从传统到智能化的技术演进
作者:蓝葛亮发布时间:2025年6月关键词:架构设计、AI原生、微服务、云原生、MLOps文章目录第一章:AI架构设计概述第二章:AI原生应用架构模式第三章:微服务在AI系统中的演进第四章:云原生AI架构实践第五章:MLOps与LLMOps工程化第六章:边缘计算与AI融合架构第七章:数据架构的AI化转型第八章:AI架构安全与治理第九章:性能优化与可扩展性第十章:行业案例与最佳实践第一章:AI架构设
- 万级K8s集群背后etcd稳定性及性能优化实践
「已注销」
云计算容器kubernetesetcddocker
背景与挑战随着腾讯自研上云及公有云用户的迅速增长,一方面,腾讯云容器服务TKE服务数量和核数大幅增长,另一方面我们提供的容器服务类型(TKE托管及独立集群、EKS弹性集群、edge边缘计算集群、mesh服务网格、serverlessknative)也越来越丰富。各类容器服务类型背后的核心都是K8s,K8s核心的存储etcd又统一由我们基于K8s构建的etcd平台进行管理。基于它我们目前管理了千级e
- Google Maps×亚矩阵云手机:重构跨境场景的地理服务新范式
云云321
矩阵智能手机重构自动化线性代数网络游戏
在全球化与数字化深度融合的当下,地理信息服务与云端虚拟化技术的结合正成为跨境业务的核心竞争力。GoogleMaps作为全球领先的地图服务提供商,凭借其精准定位、路径规划与场景化交互能力,已深度嵌入共享经济、跨境电商、本地化营销等领域。而亚矩阵云手机基于ARM虚拟化集群与边缘计算技术,通过动态IP绑定、虚拟定位与全球节点部署,为GoogleMaps的跨境应用提供了安全、高效、低延迟的底层支撑。本文将
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 【软考高级系统架构论文】论边缘计算及其应用
_Richard_
2025年软考系统架构师系统架构边缘计算人工智能
论文真题边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台(架构),就近提供边缘智能服务。边缘计算与云计算各有所长,云计算擅长全局性、非实时、长周期的大数据处理与分析,能够在长周期维护、业务决策支撑等领域发挥优势;边缘计算更适用局部性、实时、短周期数据的处理与分析,能更好地支撑本地业务的实时智能化决策与执行。因此边缘计算与云计算之间不是替代关系,而是互补协
- YOLO 在无人机视频流中的部署实践:从低延迟推理到边缘智能协同
YOLO在无人机视频流中的部署实践:从低延迟推理到边缘智能协同关键词:YOLOv8、无人机视频流、边缘部署、RTSP、低延迟推理、实时检测、JetsonOrin、RK3588、模型压缩摘要:随着无人机在巡检、安防、农业、物流等场景的广泛应用,如何将高效的目标检测模型部署在无人机或其边缘计算模块上,成为一项关键挑战。YOLO系列模型以其高性能、低延迟特性,已被广泛应用于实时视频流的智能感知任务。本文
- API网关Apisix介绍
九又四分之三站台Emm
架构师修养网络
ApacheAPISIX是一个高性能、可扩展、开源的API网关,主要用于处理API请求的流量管理、安全控制、负载均衡、动态路由、身份认证等。它是Apache基金会的顶级项目,以其云原生架构、动态配置、插件化机制等特点,在微服务、边缘计算、Kubernetes等场景中广泛应用。一、APISIX的核心架构APISIX主要由以下几个组件组成:组件名说明APISIXCore(DataPlane)用于处理实
- 深入剖析物联网边缘计算技术:架构、应用与挑战
Thanks_ks
IT洞察集物联网边缘计算技术架构应用场景安全隐私资源受限标准化挑战
在物联网(IoT)蓬勃发展的当下,海量设备产生的数据如潮水般涌来,对数据处理和响应速度提出了前所未有的挑战。边缘计算技术应运而生,成为物联网领域的关键支撑技术之一。它就像在物联网网络的“边缘”部署了一个个智能小助手,让数据处理更高效、响应更迅速。今天,我们就来深入了解一下物联网边缘计算技术。边缘计算技术架构剖析边缘计算架构主要由边缘设备、边缘网关和边缘服务器三个核心层次构成。边缘设备处于架构的最前
- Alpine Linux 简介
思静鱼
Linux&运维安装linux运维服务器
AlpineLinux简介AlpineLinux是一个轻量级的Linux发行版,专为安全性、简单性和资源效率而设计。它采用musllibc和BusyBox,使得其镜像非常小(通常只有几MB),非常适合容器化环境(如Docker)。1.Alpine的主要特点✅极小的体积基础镜像仅5MB左右(Ubuntu约70MB,CentOS约200MB)。适合微服务、Serverless和边缘计算等场景。✅安全性
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- 算力协同创新与能效优化重构工业场景技术生态
智能计算研究中心
其他
内容概要工业智能化转型正推动算力技术生态的体系化重构,其核心在于通过异构计算与边缘计算的协同创新,构建适应复杂工业场景的动态算力基础设施。当前工业互联网平台中,约67%的实时决策场景依赖边缘节点完成数据处理,而深度学习模型训练等计算密集型任务则需依托云端异构计算集群实现资源优化配置。这种分层计算架构不仅降低网络传输延迟,更使工业设备预测性维护系统的响应速度提升至毫秒级。工业质检领域的技术突破印证了
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C