深度学习全景进阶:最新Python深度学习进阶与前沿应用

近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,Ai尚研修推出全新的“Python深度学习进阶与应用”培训课程,让你系统掌握AI新理论、新方法及其Python代码实现。课程采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SDD等)、图神经网络(GCN、GAT、GIN等)、强化学习(Q-Learning、DQN等)、深度学习模型可解释性与可视化方法(CAM、Grad-CAM、LIME、t-SNE等)的基本原理及Python代码实现方法。(备注:该培训课程为进阶课程,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等第三方模块库。)现通知如下:

深度学习全景进阶:最新Python深度学习进阶与前沿应用_第1张图片

第一章

注意力(Attention)机制详解

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。

2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)

3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Loca

你可能感兴趣的:(深度学习,机器学习,深度学习,python,人工智能)