- 【数据结构】常见七大排序总结
多多钟意你吖
阶段一:数据结构数据结构排序算法算法java
目录一、插入排序:直接插入排序【稳定排序方法】二、插入排序:希尔排序【不稳定排序方法】三、选择排序:直接选择排序【不稳定排序方法】四、选择排序:堆排序【不稳定排序方法】五、交换排序:冒泡排序【稳定排序方法】六、交换排序:快速排序【不稳定排序方法】七、归并排序:归并排序【稳定排序方法】前言排序是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个相知有序的序列
- 盟接之桥EDI软件助力制造企业提质增效的五大关键举措
在当今竞争激烈的制造业环境中,企业面临着前所未有的挑战。如何在降低成本的同时提高效率,成为制造企业生存与发展的关键。盟接之桥EDI(电子数据交换)软件正是为应对这一挑战而生,通过五个核心优势帮助企业实现降本增效的目标。1.简化部署与集成,实现无缝对接传统上,企业在尝试整合新的软件系统时,往往面临复杂的部署过程和高昂的时间成本。然而,盟接之桥EDI软件以其简洁的部署流程脱颖而出。它能够迅速地与现有的
- 基于改进扩散模型与注意力机制的影像到转基因数据预测系统
基于改进扩散模型与注意力机制的影像到转基因数据预测系统1.项目概述本系统利用改进的扩散模型结合注意力机制,从医学影像中预测转基因数据。系统采用PyTorch框架实现,包含数据预处理、模型架构、训练流程和评估指标等完整模块。importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptimfromtorc
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- AI 编程对决:Gemini CLI vs Claude Code,谁是最佳 AI 编码工具?
charieli-fh
人工智能大模型
1.引言:AI编码工具的崛起在软件开发的快节奏世界中,人工智能(AI)工具正迅速从辅助角色转变为不可或缺的伙伴。它们不再仅仅是提供代码补全,而是能够理解复杂上下文、执行多步骤任务,甚至自动化整个工作流的智能代理。这种转变正在重塑开发者的日常工作,提高生产力,并加速创新。在众多涌现的AI编码工具中,Google的GeminiCLI和Anthropic的ClaudeCode脱颖而出,各自代表了AI辅助
- 深入剖析AI大模型:关于模型训练
chilavert318
熬之滴水穿石人工智能
今天说的是模型训练,在AI模型里,它是点亮智慧星辰的关键引擎。今天将围绕开源预训练模型的使用、数据与模型的集成、模型的部署管理,以及大规模模型的可扩展性与效率提升展开,带大家开启一场深入浅出的模型训练实战之旅。一、使用开源预训练模型1、如何利用开源模型(如BERT、GPT)进行微调开源预训练模型就像是已经搭建好框架的摩天大楼,BERT、GPT等模型便是其中声名赫赫的标志性建筑。它们经过海量数据的“
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 微调 || RAG,项目落地怎么选?LLM应用选型指南,适用场景全解析
认知超载
AI人工智能
基本定义微调:是指利用更小、更具针对性的数据集对经过预先训练的大语言模型进一步训练的过程。在这个过程中,模型基于新数据集修改权重和参数,学习特定于任务的模式,同时保留来自最初预训练模型的知识。RAG:即检索增强生成,是将检索大量外部知识的过程与文本生成结合在一起的一种方法。它会从大型外部数据库中检索与输入问题相关的信息,将这些信息作为上下文提供给大语言模型,辅助其生成回答。微调适用场景1.特定领域
- 《二分枚举答案(配合经典算法)》题集
英雄哪里出来
算法数据结构英雄算法联盟二分
文章目录1、模板题集2、课内题集3、课后题集1.差分2.贪心/排序3.二维前缀和4.K大数5.BFS6.最短路7.数位DP1、模板题集分巧克力2、课内题集倒水冶炼金属连续子序列的个数3、课后题集括号内的整数代表完整代码行数。1.差分粉刷小能手小蓝(42)操作数组的最小次数(43)森林的最大美丽值(44)2.贪心/排序信号塔(33)可得到的最大团队默契(35)3.二维前缀和小秋的矩阵(48)4.K大
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- Java AI 开发智能体:从入门到实践
培风图南以星河揽胜
javajava人工智能开发语言
在人工智能(AI)技术蓬勃发展的今天,智能体作为AI领域的核心概念之一,正逐渐渗透到各个行业与应用场景。而Java凭借其跨平台性、丰富的类库和强大的生态系统,成为开发智能体的热门选择。本文将深入探讨如何使用Java进行AI开发智能体,从基础概念到实践应用,解答常见问题,为你揭开JavaAI开发智能体的神秘面纱。一、Java在AI开发中的优势1.跨平台性Java的“一次编写,到处运行”特性,使得基于
- Spring MVC 详解
蟒蛇boy
springmvcjava
在JavaWeb开发中,SpringMVC是一个强大而广泛使用的框架,它为构建高效、可维护的企业级应用提供了坚实的基础。本文将深入介绍SpringMVC,并提供示例代码帮助你更好地理解其工作原理。一、SpringMVC简介SpringMVC是Spring框架的一个模块,全称为SpringWebMVC。它实现了模型-视图-控制器(MVC)设计模式,将应用程序分为三个主要部分:模型(Model)、视图
- Vue简介,什么是Vue(Vue3)?
水云桐程序员
vue.js前端javascript
什么是Vue?Vue是一款用于构建用户界面的JavaScript框架。它基于标准HTML、CSS和JavaScript构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。无论是简单的还是复杂地界面,Vue都可以胜任。声明式渲染:Vue基于标准HTML拓展了一套模板语法,使得我们可以声明式地描述最终输出地HTML和JavaScript状态之间的关系。响应性:Vue会自动跟踪Jav
- ollama v0.9.4 详解:联网功能、模型目录自定义及macOS性能优化全面升级
近年来,随着人工智能技术的快速发展,模型管理与调用变得尤为重要。作为一款备受关注的本地AI模型管理工具,Ollama在最新发布的v0.9.4版本中带来了多项重磅改进和全新功能,提升了用户体验和应用场景的灵活性。本文将深入解析Ollamav0.9.4版本的功能亮点、技术改进以及实用操作指南,帮助广大开发者和AI爱好者全面掌握这款工具的最新动态。一、版本概述Ollamav0.9.4版本于2025年7月
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 用鸿蒙打造真正的跨设备数据库:从零实现分布式存储
网罗开发
HarmonyOS实战源码实战harmonyos数据库分布式
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 【V5.0 - 视觉篇】AI的“火眼金睛”:用OpenCV量化“第一眼缘”,并用SHAP验证它的“审美”
爱分享的飘哥
AI人工智能opencv计算机视觉
系列回顾:在上一篇《给AI装上“写轮眼”:用SHAP看穿模型决策的每一个细节》中,我们成功地为AI装上了“透视眼镜”,看穿了它基于数字决策的内心世界。但一个巨大的问题暴露了:它的世界里,还只有数字。它能理解“时长60秒”,却无法感受画面的震撼。它是一个强大的“盲人数学家”。计算机视觉我们没有必要为每个视频进行切帧,可以针对开头的视频或者中间关键点视频进行切帧,让计算机识别。承上启下:“现在,我们来
- 国密算法如何守护金融安全?7大核心场景全解析
南京首传信安科技有限公司
密码应用密码应用金融安全
目录一、主要应用场景1.基础设施安全2.身份认证与访问管理3.交易安全与不可否认性4.数据安全5.支付清算与结算6.移动金融安全7.风控与反欺诈二、商用密码应用带来的核心价值三、面临的挑战与趋势四、首传信安解决方案总结金融领域的安全需求是一个极其严苛、多层次、动态演进的体系,其核心目标是构建信任基础,确保资金安全、系统稳定、隐私合规、业务连续。商用密码算法在金融领域的应用是保障金融安全的核心技术支
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- Python Day42
别勉.
python机器学习python开发语言
Task:Grad-CAM与Hook函数1.回调函数2.lambda函数3.hook函数的模块钩子和张量钩子4.Grad-CAM的示例1.回调函数定义:回调函数是作为参数传入到其他函数中的函数,在特定事件发生时被调用。特点:便于扩展和自定义程序行为。常用于训练过程中的监控、日志记录、模型保存等场景。示例:defcallback_function():print("Epochcompleted!")
- 零基础起步:基于GpuGeek的文本生成模型实战
昊昊该干饭了
人工智能nlp深度学习gpu算力gru
在自然语言处理(NLP)领域,文本生成任务广泛应用于问答系统、智能摘要、内容创作等方向。本文将带领读者使用GpuGeek平台,从注册、上传数据到实例部署与训练,完整构建一个基于GPT2模型的文本生成系统,实战掌握AI模型的云端开发流程。目录一、GpuGeek平台使用流程详解1.注册与登录2.数据上传3.创建训练实例4.启动与使用实例5.关闭实例(手动&自动)二、文本生成实战任务:微调GPT-21.
- pycharm运行py之路径、导入问题
hellopbc
#pycharmpythonpycharmpythonpythonpathpythonimport导入导包调用
文章目录pycharm运行py之路径、导入问题ref实验总结一、运行方式和pycharm窗口二、工作目录`wdir`和系统路径`sys.path`三、模块、包的导入四、大总结pycharm运行py之路径、导入问题加载文件:使用相对路径加载文件时,叠加调用后,会因为工作目录的不同,导致相对路径转绝对路径后,会报找不到文件错误。调用模块:会出现引用的包,在pycharm跳转查看是正常的,但是运行会报错
- 大模型智能运维详解:技术架构、落地挑战与行业实践
FreeTools
FreeAiGuard运维架构人工智能运维开发科技
大模型智能运维详解:技术架构、落地挑战与行业实践作者:开源大模型智能运维FreeAiOps在数字化转型加速的背景下,企业IT系统复杂度呈指数级增长,传统运维模式面临效率低下、故障定位困难、成本高昂等瓶颈。大模型技术的出现为智能运维提供了突破性解决方案,其通过自然语言处理、多模态数据分析与自动化决策能力,正在重塑运维工作的底层逻辑。本文将从技术原理、落地挑战、行业实践三个维度,系统解析大模型智能运维
- LangServer 与 Langgraph 融合架构:构建智能语言服务系统
小赖同学啊
人工智能架构
LangServer与Langgraph融合架构:构建智能语言服务系统LangServer(语言服务器协议)与Langgraph(语言图模型)的结合将创造新一代智能语言处理平台,实现从底层语言理解到高层应用服务的全链路增强。以下是深度技术方案:一、核心融合价值Langgraph语义理解知识图谱构建LangServer接口服务开发工具链业务系统实时反馈关键增强点:语义深度:Langgraph提供上下
- Kafka 核心机制面试题--自问自答
亲爱的非洲野猪
kafka分布式
基础篇Q1:Kafka为什么能这么快?A:Kafka的高性能主要来自三大核心技术:零拷贝(Zero-Copy):通过sendfile()系统调用,数据直接从磁盘到网卡,避免了内核态和用户态之间的多次拷贝页缓存(PageCache):消息直接写入操作系统页缓存而非JVM内存,减少GC影响并利用OS缓存机制内存映射(mmap):索引文件通过内存映射实现,操作内存即操作文件Q2:Kafka的存储结构是怎
- LangSmith 深度解析:构建企业级LLM应用的全生命周期平台
小赖同学啊
人工智能人工智能
LangSmith深度解析:构建企业级LLM应用的全生命周期平台LangSmith是LangChain生态系统中的核心组件,为LLM应用提供从开发到生产的全链路支持。以下是全面技术解析:一、核心架构设计应用层LangSmithSDK采集层处理引擎存储层分析层控制台监控告警1.分层架构详解层级组件功能技术栈应用层LLM应用业务逻辑执行LangChain,LangGraph采集层Tracer数据收集O
- Tensorflow 回归模型 FLASK + DOCKER 部署 至 Ubuntu 虚拟机
准备工作:安装虚拟机,安装ubuntu,安装python3.x、pip和对应版本的tensorflow和其他库文件,安装docker。注意事项:1.windows系统运行的模型文件不能直接运行到虚拟机上,需在虚拟机上重新运行并生成模型文件2.虚拟机网络状态改为桥接Flask代码如下:fromflaskimportFlask,request,jsonifyimportpickleimportnump
- Instrct-GPT 强化学习奖励模型 Reward modeling 的训练过程原理实例化详解
John_今天务必休息一天
2_大语言模型基础#2.2生成式预训练语言模型GPTgptlog4j语言模型人工智能自然语言处理算法
Instrct-GPT强化学习奖励模型Rewardmodeling的训练过程原理实例化详解一、批次处理的本质:共享上下文的比较对捆绑(1)为什么同一prompt的比较对必须捆绑?(2)InstructGPT的优化方案二、输入输出与损失函数的具体构造(1)输入输出示例(2)人工标注数据的处理(3)损失函数的计算过程(4)反向传播的核心逻辑三、为什么不需要人工标注分值?(1)排序数据的天然属性(2)避
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache