题目大意:给一个n*m的矩阵,给一些点(ri,ci)表示该点在第ri行第ci列。现在要覆盖所有的点,已知覆盖第i行代价为Ri,覆盖第j列代价为Cj。总代价是累乘的,求最小总代价能覆盖所有的点。
题目分析:最小割。增加一个超级源点和超级汇点,源点到行连边,边权为覆盖行的代价,每列到汇点建边,边权为覆盖该列的代价。对于给定的点对,ri->cj连边,边权无穷大。求一个最小割即可。因为根据割的性质,会将图分成2部分,一部分含源点,一部分含汇点,那么这个割集的边只可能为s->ri、ri->cj、cj->t中的某些边,而ri->cj权是无穷大的,所以不会选这些边,因此割集必在s->ri和cj->t中,那么割集中的边就代表选中要覆盖的行和列,因为要总代价最小,所以求出最小割就是最小总代价。
因为总代价是累乘的,所以要化乘法为加法,取对数。
trick:输出浮点数的时候%.f,%.lf会WA。。。
详情请见代码:
#include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; const int N = 105; const int M = 5500; const double inf = 100000000.0; const double eps = 1e-8; int m,n,l,num; struct node { double c; int to,next,pre; }arc[M]; int head[N],sta[N],que[N],cnt[N],dis[N],rpath[N]; void build(int s,int e,double cap) { arc[num].to = e; arc[num].c = cap; arc[num].next = head[s]; head[s] = num ++; arc[num - 1].pre = num; arc[num].pre = num - 1; arc[num].to = s; arc[num].c = 0.0; arc[num].next = head[e]; head[e] = num ++; } void re_Bfs() { int i,front,rear; for(i = 0;i <= n + m + 1;i ++) { dis[i] = n + m + 2; cnt[i] = 0; } front = rear = 0; dis[n + m + 1] = 0; cnt[0] = 1; que[rear ++] = n + m + 1; while(front != rear) { int u = que[front ++]; for(i = head[u];i != -1;i = arc[i].next) { if(arc[arc[i].pre].c < eps || dis[arc[i].to] < n + m + 2) continue; dis[arc[i].to] = dis[u] + 1; cnt[dis[arc[i].to]] ++; que[rear ++] = arc[i].to; } } } void ISAP() { re_Bfs(); int i,u; double maxflow = 0.0; for(i = 0;i <= n + m + 1;i ++) sta[i] = head[i]; u = 0; while(dis[0] < n + m + 2) { if(u == n + m + 1) { double curflow = inf; for(i = 0;i != m + n + 1;i = arc[sta[i]].to) curflow = min(curflow,arc[sta[i]].c); for(i = 0;i != m + n + 1;i = arc[sta[i]].to) { arc[sta[i]].c = arc[sta[i]].c - curflow; arc[arc[sta[i]].pre].c = arc[arc[sta[i]].pre].c + curflow; } maxflow = maxflow + curflow; u = 0; } for(i = sta[u];i != -1;i = arc[i].next) if(arc[i].c > eps && dis[arc[i].to] + 1 == dis[u]) break; if(i != -1) { sta[u] = i; rpath[arc[i].to] = arc[i].pre; u = arc[i].to; } else { if((-- cnt[dis[u]]) == 0) break; sta[u] = head[u]; int Min = m + n + 2; for(i = sta[u];i != -1;i = arc[i].next) if(arc[i].c > eps) Min = min(Min,dis[arc[i].to]); dis[u] = Min + 1; cnt[dis[u]] ++; if(u != 0) u = arc[rpath[u]].to; } } printf("%.4lf\n",pow(10.0,maxflow)); } int main() { int t,i; int a,b; double x; scanf("%d",&t); while(t --) { memset(head,-1,sizeof(head)); scanf("%d%d%d",&n,&m,&l); for(i = 1;i <= n;i ++) { scanf("%lf",&x); build(0,i,log10(x)); } for(i = 1;i <= m;i ++) { scanf("%lf",&x); build(n + i,m + n + 1,log10(x)); } while(l --) { scanf("%d%d",&a,&b); build(a,n + b,inf); } ISAP(); } return 0; } //568K 16MS