【详解Anaconda 、多环境安装多个不同python版本以及根据需要切换python版本】

前言

本文旨在详细介绍Anaconda 以及 如何在Anaconda上更换python版本。

备注: 根据读者建议,这里明确如下:
标题中的“在Anaconda上更换python版本”实际上是指:通过创建新的环境,得到自己想要的Python版本环境,而非在现有的环境中修改Python版本(这个应该也比较简单,参考我另外一篇博客:在当前conda env(conda环境)内修改Python的版本(升级或者降级),当然,仅供参考)。

1 Anaconda具体是用来干什么的

根据其主页介绍:https://www.anaconda.com/what-is-anaconda/

Anaconda - The Most Popular Python Data Science Platform
Anaconda Distribution - With over 6 million users, the open source Anaconda Distribution is the fastest and easiest way to do Python and R data science and machine learning on Linux, Windows, and Mac OS X. It’s the industry standard for developing, testing, and training on a single machine.

Anaconda是最流行的数据科学平台。但这个还不能解释性质上的问题。

根据wiki百科,https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)

Anaconda is a free and open source[5] distribution of the Python and R programming languages for data science and machine learning related applications (large-scale data processing, predictive analytics, scientific computing), that aims to simplify package management and deployment. Package versions are managed by the package management system conda.[6] The Anaconda distribution is used by over 6 million users, and it includes more than 250 popular data science packages suitable for Windows, Linux, and MacOS.[5]

这下就更清楚了,Anaconda是一个免费,开源的针对数据科学处理和机器学习相关应用的Python和R语言的发行版。Anaconda发行版被6百万人使用,而且它包括了超过250个流行的数据科学处理包(适用于各个平台)。

Anaconda distribution comes with more than 1,000 data packages as well as the Conda package and virtual environment manager, called Anaconda Navigator [7], so it eliminates the need to learn to install each library independently.

Anaconda = 超过1000个数据包 + Conda package + virtual envir

你可能感兴趣的:(python,开发语言)