1. 把之前所有的处理手段都处理一遍,回顾一下全流程,以后就用处理好的部分直接完成
2. 开始机器学习建模(简单建模,不涉及调参)和评估
1. 导入库
2. 读取数据查看数据信息--理解数据
3. 缺失值处理
4. 异常值处理
5. 离散值处理
6. 删除无用列
7. 划分数据集
8. 特征工程
9. 模型训练
10. 模型评估
11. 模型保存
12. 模型预测
知识点:
作业:尝试对心脏病数据集采用机器学习模型建模和评估
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('heart.csv') #读取数据
print("数据基本信息:")
data.info()
print("\n数据前5行预览:")
print(data.head())
#这个数据没有离散的需要处理很得劲
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 划分训练集和测试机
from sklearn.model_selection import train_test_split
X = data.drop(['target'], axis=1) # 特征,axis=1表示按列删除
y = data['target'] # 标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 划分数据集,20%作为测试集,随机种子为42
# 训练集和测试集的形状
print(f"训练集形状: {X_train.shape}, 测试集形状: {X_test.shape}") # 打印训练集和测试集的形状
from sklearn.svm import SVC #支持向量机分类器
from sklearn.neighbors import KNeighborsClassifier #K近邻分类器
from sklearn.linear_model import LogisticRegression #逻辑回归分类器
import xgboost as xgb #XGBoost分类器
import lightgbm as lgb #LightGBM分类器
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from catboost import CatBoostClassifier #CatBoost分类器
from sklearn.tree import DecisionTreeClassifier #决策树分类器
from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# SVM
svm_model = SVC(random_state=42)
svm_model.fit(X_train, y_train)
svm_pred = svm_model.predict(X_test)
print("\nSVM 分类报告:")
print(classification_report(y_test, svm_pred)) # 打印分类报告
print("SVM 混淆矩阵:")
print(confusion_matrix(y_test, svm_pred)) # 打印混淆矩阵
# 计算 SVM 评估指标,这些指标默认计算正类的性能
svm_accuracy = accuracy_score(y_test, svm_pred)
svm_precision = precision_score(y_test, svm_pred)
svm_recall = recall_score(y_test, svm_pred)
svm_f1 = f1_score(y_test, svm_pred)
print("SVM 模型评估指标:")
print(f"准确率: {svm_accuracy:.4f}")
print(f"精确率: {svm_precision:.4f}")
print(f"召回率: {svm_recall:.4f}")
print(f"F1 值: {svm_f1:.4f}")
# KNN
knn_model = KNeighborsClassifier()
knn_model.fit(X_train, y_train)
knn_pred = knn_model.predict(X_test)
print("\nKNN 分类报告:")
print(classification_report(y_test, knn_pred))
print("KNN 混淆矩阵:")
print(confusion_matrix(y_test, knn_pred))
knn_accuracy = accuracy_score(y_test, knn_pred)
knn_precision = precision_score(y_test, knn_pred)
knn_recall = recall_score(y_test, knn_pred)
knn_f1 = f1_score(y_test, knn_pred)
print("KNN 模型评估指标:")
print(f"准确率: {knn_accuracy:.4f}")
print(f"精确率: {knn_precision:.4f}")
print(f"召回率: {knn_recall:.4f}")
print(f"F1 值: {knn_f1:.4f}")
# 逻辑回归
logreg_model = LogisticRegression(random_state=42)
logreg_model.fit(X_train, y_train)
logreg_pred = logreg_model.predict(X_test)
print("\n逻辑回归 分类报告:")
print(classification_report(y_test, logreg_pred))
print("逻辑回归 混淆矩阵:")
print(confusion_matrix(y_test, logreg_pred))
logreg_accuracy = accuracy_score(y_test, logreg_pred)
logreg_precision = precision_score(y_test, logreg_pred)
logreg_recall = recall_score(y_test, logreg_pred)
logreg_f1 = f1_score(y_test, logreg_pred)
print("逻辑回归 模型评估指标:")
print(f"准确率: {logreg_accuracy:.4f}")
print(f"精确率: {logreg_precision:.4f}")
print(f"召回率: {logreg_recall:.4f}")
print(f"F1 值: {logreg_f1:.4f}")
# 朴素贝叶斯
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
nb_pred = nb_model.predict(X_test)
print("\n朴素贝叶斯 分类报告:")
print(classification_report(y_test, nb_pred))
print("朴素贝叶斯 混淆矩阵:")
print(confusion_matrix(y_test, nb_pred))
nb_accuracy = accuracy_score(y_test, nb_pred)
nb_precision = precision_score(y_test, nb_pred)
nb_recall = recall_score(y_test, nb_pred)
nb_f1 = f1_score(y_test, nb_pred)
print("朴素贝叶斯 模型评估指标:")
print(f"准确率: {nb_accuracy:.4f}")
print(f"精确率: {nb_precision:.4f}")
print(f"召回率: {nb_recall:.4f}")
print(f"F1 值: {nb_f1:.4f}")
# 决策树
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
dt_pred = dt_model.predict(X_test)
print("\n决策树 分类报告:")
print(classification_report(y_test, dt_pred))
print("决策树 混淆矩阵:")
print(confusion_matrix(y_test, dt_pred))
dt_accuracy = accuracy_score(y_test, dt_pred)
dt_precision = precision_score(y_test, dt_pred)
dt_recall = recall_score(y_test, dt_pred)
dt_f1 = f1_score(y_test, dt_pred)
print("决策树 模型评估指标:")
print(f"准确率: {dt_accuracy:.4f}")
print(f"精确率: {dt_precision:.4f}")
print(f"召回率: {dt_recall:.4f}")
print(f"F1 值: {dt_f1:.4f}")
# 随机森林
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)
rf_pred = rf_model.predict(X_test)
print("\n随机森林 分类报告:")
print(classification_report(y_test, rf_pred))
print("随机森林 混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
rf_accuracy = accuracy_score(y_test, rf_pred)
rf_precision = precision_score(y_test, rf_pred)
rf_recall = recall_score(y_test, rf_pred)
rf_f1 = f1_score(y_test, rf_pred)
print("随机森林 模型评估指标:")
print(f"准确率: {rf_accuracy:.4f}")
print(f"精确率: {rf_precision:.4f}")
print(f"召回率: {rf_recall:.4f}")
print(f"F1 值: {rf_f1:.4f}")
# XGBoost
xgb_model = xgb.XGBClassifier(random_state=42)
xgb_model.fit(X_train, y_train)
xgb_pred = xgb_model.predict(X_test)
print("\nXGBoost 分类报告:")
print(classification_report(y_test, xgb_pred))
print("XGBoost 混淆矩阵:")
print(confusion_matrix(y_test, xgb_pred))
xgb_accuracy = accuracy_score(y_test, xgb_pred)
xgb_precision = precision_score(y_test, xgb_pred)
xgb_recall = recall_score(y_test, xgb_pred)
xgb_f1 = f1_score(y_test, xgb_pred)
print("XGBoost 模型评估指标:")
print(f"准确率: {xgb_accuracy:.4f}")
print(f"精确率: {xgb_precision:.4f}")
print(f"召回率: {xgb_recall:.4f}")
print(f"F1 值: {xgb_f1:.4f}")
# LightGBM
lgb_model = lgb.LGBMClassifier(random_state=42)
lgb_model.fit(X_train, y_train)
lgb_pred = lgb_model.predict(X_test)
print("\nLightGBM 分类报告:")
print(classification_report(y_test, lgb_pred))
print("LightGBM 混淆矩阵:")
print(confusion_matrix(y_test, lgb_pred))
lgb_accuracy = accuracy_score(y_test, lgb_pred)
lgb_precision = precision_score(y_test, lgb_pred)
lgb_recall = recall_score(y_test, lgb_pred)
lgb_f1 = f1_score(y_test, lgb_pred)
print("LightGBM 模型评估指标:")
print(f"准确率: {lgb_accuracy:.4f}")
print(f"精确率: {lgb_precision:.4f}")
print(f"召回率: {lgb_recall:.4f}")
print(f"F1 值: {lgb_f1:.4f}")
@浙大疏锦行