hdu 4117 GRE Words AC自动机DP

题目:给出n个串,问最多能够选出多少个串,使得前面是后面串的子串(按照输入顺序)

分析:

  其实这题是这题SPOJ 7758. Growing Strings AC自动机DP的进阶版本,主题思想差不多。

  对于这题来说,需要离线操作。dp转移也是很显然。

  但是由于数据比较大,所以普通的沿着fail指针往上走,逐步更新答案会TLE。

  考虑把fail指针反向,由于ac自动机的每个节点均有唯一的fail指针,若是沿着fail指针往上走,显然都会走到root,所以反向之后显然是一棵树,不妨称之为fail树。fail树有什么特点呢?可以画个图试试,如果儿子节点出现过,那么他的祖先显然也会出现!

  因此,正确的做法时:

  建立所有单词的AC自动机,对于每个节点的转移,都是从parent[]或者从fail[],fail[fail[]],...得到的。可以看出fail[]的关系形成一棵树,于是问题转化成,不断在节点处插入,询问点到根路径上的最大值,可以利用dfs序列转化用线段树维护。

 

#include <queue>

#include <vector>

#include <cstdio>

#include <cstring>

#include <complex>

#include <iostream>

#include <algorithm>



using namespace std;



typedef long long ll;

typedef unsigned long long ull;



#define debug puts("here")

#define rep(i,n) for(int i=0;i<n;i++)

#define rep1(i,n) for(int i=1;i<=n;i++)

#define REP(i,a,b) for(int i=a;i<=b;i++)

#define foreach(i,vec) for(unsigned i=0;i<vec.size();i++)

#define pb push_back

#define RD(n) scanf("%d",&n)

#define RD2(x,y) scanf("%d%d",&x,&y)

#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)

#define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w)

#define All(vec) vec.begin(),vec.end()

#define MP make_pair

#define PII pair<int,int>

#define PQ priority_queue

#define cmax(x,y) x = max(x,y)

#define cmin(x,y) x = min(x,y)

#define Clear(x) memset(x,0,sizeof(x))

#define lson rt<<1

#define rson rt<<1|1

#define SZ(x) x.size()



/******** program ********************/



const int MAXN = 3e5+5;

const int kind = 26;



char s[MAXN];

int beg[MAXN];



struct segTree {

    int l,r,mx;

    int cov;

    inline int mid() {

        return (l+r)>>1;

    }

} tree[MAXN<<2];



void build(int l,int r,int rt) {

    tree[rt].l = l;

    tree[rt].r = r;

    tree[rt].cov = tree[rt].mx = 0;

    if(l==r)return;

    int mid = tree[rt].mid();

    build(l,mid,lson);

    build(mid+1,r,rson);

}



void update(int rt){

    if(tree[rt].cov==0)return;

    cmax( tree[lson].cov,tree[rt].cov );

    cmax( tree[rson].cov,tree[rt].cov );

    cmax( tree[lson].mx,tree[rt].cov );

    cmax( tree[rson].mx,tree[rt].cov );

    tree[rt].cov = 0;

}



void modify(int l,int r,int mx,int rt) {

    if(l<=tree[rt].l&&tree[rt].r<=r) {

        cmax(tree[rt].mx,mx);

        cmax(tree[rt].cov,mx);

        return;

    }

    update(rt);

    int mid = tree[rt].mid();

    if(r<=mid)modify(l,r,mx,lson);

    else if(l>mid)modify(l,r,mx,rson);

    else {

        modify(l,r,mx,lson);

        modify(l,r,mx,rson);

    }

    tree[rt].mx = max( tree[lson].mx,tree[rson].mx );

}



int ask(int pos,int rt) {

    if(tree[rt].l==tree[rt].r)

        return tree[rt].mx;

    update(rt);

    int mid = tree[rt].mid();

    if(pos<=mid)return ask(pos,lson);

    else return ask(pos,rson);

}



int ch[MAXN][kind],fail[MAXN];

int val[MAXN];

int st[MAXN],ed[MAXN];

int tot,tim;

vector<int> adj[MAXN];



inline void set(int x) {

    Clear(ch[x]);

    fail[x] = 0;

    adj[x].clear();

}

inline void init() {

    set(1);

    tot = 1;

}

inline int newNode() {

    set(++tot);

    return tot;

}

inline int ind(char c) {

    return c-'a';

}



inline void ins(int x,int y,int val) {

    int r = 1;

    REP(i,x,y) {

        int c = ind(s[i]);

        if(ch[r][c]==0)

            ch[r][c] = newNode();

        r = ch[r][c];

    }

}



inline void build() {

    queue<int> q;

    q.push(1);

    while(!q.empty()) {

        int r = q.front();

        q.pop();

        if(fail[r])

            adj[ fail[r] ].pb(r);

        rep(c,kind) {

            int x = ch[r][c];

            if(!x)continue;

            q.push(x);



            int y = fail[r];

            while(y&&ch[y][c]==0)

                y = fail[y];

            fail[x] = y?ch[y][c]:1;

        }

    }

}



void dfs(int x) {

    st[x] = ++ tim;

    foreach(i,adj[x]) {

        int y = adj[x][i];

        dfs(y);

    }

    ed[x] = tim;

}



inline int run() {

    init();



    int n;

    RD(n);

    rep1(i,n) {

        scanf("%s",s+beg[i-1]);

        RD(val[i]);

        beg[i] = beg[i-1]+strlen(s+beg[i-1]);

        ins(beg[i-1],beg[i]-1,val[i]);

    }

    build();



    tim = 0;

    dfs(1);

    build(1,tim,1);



    int ans = 0;

    rep1(i,n) {

        int r = 1;

        int now = 0;

        for(int j=beg[i-1]; j<beg[i]; j++) {

            int c = ind(s[j]);

            r = ch[r][c];

            cmax(now,ask( st[r],1 ));

        }

        now += val[i];

        modify(st[r],ed[r],now,1);

        cmax(ans,now);

    }

    return ans;

}



int main() {



#ifndef ONLINE_JUDGE

    freopen("sum.in","r",stdin);

    //freopen("sum.out","w",stdout);

#endif



    int ssize = 128 << 20; // 256MB

    char *ppp = (char*)malloc(ssize) + ssize;

    __asm__("movl %0, %%esp\n" :: "r"(ppp) );



    int ncase,Ncase = 0;

    RD(ncase);

    while(ncase--)

        printf("Case #%d: %d\n",++Ncase,run());



    return 0;

}

  

 

你可能感兴趣的:(AC自动机)