POJ 3295, Tautology

输入字符串为二叉树的先根遍历(Pre-order string),可采用堆栈或者递归。

一般pre-order 字符串计算使用递归, post-order 字符串计算使用堆栈


Description

WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
p, q, r, s, and t are WFFs
if w is a WFF, Nw is a WFF
if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
The meaning of a WFF is defined as follows:
p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below. Definitions of K, A, N, C, and E
  w  x   Kwx   Awx    Nw   Cwx   Ewx
  1  1   1       1         0      1        1
  1  0   0       1         0      0        0
  0  1   0       1         1      1        0
  0  0   0       0         1      1        1

 

A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

 

Input

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

 

Output

For each test case, output a line containing tautology or not as appropriate.

 

Sample Input
ApNp
ApNq
0

 

Sample Output
tautology
not

 

Source
Waterloo Local Contest, 2006.9.30


 

//  POJ3295.cpp : Defines the entry point for the console application.
//

#include 
< iostream >
#include 
< string >
using   namespace  std;

static   int  pos  =   - 1 ;
bool  WFF( const   string &  formula,  int  i)
{
    
++ pos;
    
switch (formula[pos])
    {
    
case   ' p ' :
        
return  i  &   1 ;
    
case   ' q ' :
        
return  (i  >>   1 &   1 ;
    
case   ' r ' :
        
return  (i  >>   2 &   1 ;
    
case   ' s ' :
        
return  (i  >>   3 &   1 ;
    
case   ' t ' :
        
return  (i  >>   4 &   1 ;
    
case   ' N ' :
        
return   ! WFF(formula, i);
    
case   ' K ' :
        
return  WFF(formula, i)  &  WFF(formula, i);
    
case   ' A ' :
        
return  WFF(formula, i)  |  WFF(formula, i);
    
case   ' C ' :
        
return   ! WFF(formula, i)  |  WFF(formula, i);
    
case   ' E ' :
        
return  WFF(formula, i)  ==  WFF(formula, i);
    }
    
    
return   false ;
};

bool  isTautology( string  formula)
{
    
for  ( int  i  =   0 ; i  <   32 ++ i)
    {
        pos 
=   - 1 ;
        
if  (WFF(formula, i) == false return   false ;;
    }
    
return   true ;
};

int  main( int  argc,  char *  argv[])
{
    
string  ln;
    
while  (cin  >>  ln  &&  ln[ 0 !=   ' 0 ' )
    {
        
if  (isTautology(ln)) cout  <<   " tautology\n " ;
        
else  cout  <<   " not\n " ;
    }
    
return   0 ;
}

你可能感兴趣的:(auto)