- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- 洛谷[P4779]单源最短路径(标准版)
Shadow_of_the_sun
c++
前言SPFASPFA算法由于它上限O(NM)=O(VE)O(NM)=O(VE)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:dijkstradijkstra.什么是dijkstradijkstra?dijkstradijkstra是一种单源最短路径算法,时间复杂度上限为O(n^2)O(n2)(朴素),在实际应用中较为稳定;;加上堆优化之后更是具有O((n+m)\log_{
- 信息学奥赛一本通 2101:【23CSPJ普及组】旅游巴士(bus) | 洛谷 P9751 [CSP-J 2023] 旅游巴士
君义_noip
CSP/NOIP真题解答信息学奥赛一本通题解洛谷题解算法动态规划信息学奥赛
【题目链接】ybt2101:【23CSPJ普及组】旅游巴士(bus)洛谷P9751[CSP-J2023]旅游巴士【题目考点】1.图论:求最短路Dijkstra,SPFA2.动态规划3.二分答案4.图论:广搜BFS【解题思路】解法1:Dijkstra堆优化每个地点是一个顶点,每条道路是一条边,道路只能单向通行,该图是有向图。通过每条边用时都是1单位时间,那么该图是无权图。每条道路都有开放时刻a,也就
- 【模板】Spfa判负环
user_qym
最短路C++题解
【模板】Spfa判负环给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你判断图中是否存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式如果图中存在负权回路,则输出“Yes”,否则输出“No”。数据范围1≤n≤2000,1≤m≤10000,图中涉及边长绝对值均不超过10000。输入样例:331
- spfa判负环
Tom Marvolo
算法基础·搜索与图论·最短路
大雪菜的课(笔记)搜索与图论(二)1.最短路(5).spfa判负环模板(spfa判断图中是否存在负环——模板题AcWing852.spfa判断负环)时间复杂度是O(nm)O(nm),nn表示点数,mm表示边数intn;//总点数inth[N],w[N],e[N],ne[N],idx;//邻接表存储所有边intdist[N],cnt[N];//dist[x]存储1号点到x的最短距离,cnt[x]存储
- 图论 —— SPFA 模板
努力的老周
OI笔记算法模板笔记图论算法数据结构SPFA算法
概述本文使用优先队列优化的SPFA算法。时间复杂度一般为O(m)O(m)O(m),最坏为O
- C++实现SPFA判断负环算法
大王算法
C++入门及项目实战宝典数据结构和算法实战宝典SPFA判断负环算法
1、SPFA判断负环算法要求给定每条街的拥挤度p(x),街a到街b的时间就是(p(b)-p(a))**3,求第一个点到第k个点的最短路,若无法到达或结果小于3,输出’?’。2、算法思路显然,题目可能存在负环,则所有负环上的点全应该输出’?’,因为它们必定小于3,所以,spfa判断负环,并进行标记,即可解决。3、代码实现#include#include#include#include#include
- 图论——spfa判负环
0x7F7F7F7F
图论算法
负环图GGG中存在一个回路,该回路边权之和为负数,称之为负环。spfa求负环方法1:统计每个点入队次数,如果某个点入队n次,说明存在负环。证明:一个点入队n次,即被更新了n次。一个点每次被更新时所对应最短路的边数一定是递增的,也正因此该点被更新n次那么该点对应的的最短路长度一定大于等于n,即路径上点的个数至少为n+1。根据抽屉原理,路径中至少有一个顶点出现两次,也就是路径中存在环路。而算法保证只有
- 图论——最短路
IGP9
算法图论
图片来自Acwing平台本文主要内容:朴素Dijkstra算法堆优化Dijkstra算法Bellman-Ford算法SPFA算法Floyd算法1朴素Dijkstra算法主要功能:求没有负权边的图的单源最短路时间复杂度:o(n2)基本思路:假设存在一个集合s,集合中的所有节点的最短路距离已经被求解,并且存入到了dist[]中每次挑选集合外dist值最小的节点t加入集合s,用该点更新其他所以节点循环n
- 备战CSP(1):复习图论之最短路算法SPFA
鹤上听雷
算法图论
接下来,我们将用这道题目来复习最短路算法,dijk和spfa。LuoguP3371【模板】单源最短路径(弱化版)题目背景本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步P4779。题目描述如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。输入格式第一行包含三个整数n,m,sn,m,sn,m,s,分别表示点的个数、有向边的个数、出发点的编号。接下来mm
- 洛谷P2865 [USACO06NOV] Roadblocks G【C++解法】【次短路问题】
#Dong#
c++算法数据结构图论
/*求次短路问题【spfa解法】本题思路:1.用spfa做,用d1记录从1到n所有点距离点1的最短距离,用d2记录从n到1所有点距离点n的最短距离那么此时d1[n]即为1到n点的最短距离2.遍历每个顶点x,找到它们所指向的点y,利用d1[x](x距离1的最短距离)+d2[y](y距·离n的最短距离)+w[i](x和y的边的权值)因为次短路一定严格大于最短路,而且又是除了最短路以外最小的那个,所以利
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- python带空格的路径_使用带空格的路径调用脚本
weixin_39729784
python带空格的路径
我有一个GUI,并且正在使用一个按钮来调用python脚本。我pythonos.path.abspath(os.path.dirname(__file__))用来获取GUI脚本的目录,并进一步使用它来调用该目录的子文件夹中的脚本。我使用以下方法获取GUI的路径:sPfad=os.path.abspath(os.path.dirname(__file__))print(sPfad)T:\kst597
- DAY60-图论-Bellman_ford
No.Ada
LeetCode刷题手册图论
Bellman_ford队列优化算法(又名SPFA)publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);intn=scan.nextInt();intm=scan.nextInt();//初始化List>edges=newArrayListtemp=newArrayListqueue=newLinkedListt
- 2022-01-14每日刷题打卡
你好_Ä
图论算法
2022-01-14每日刷题打卡AcWing——y总算法课851.spfa求最短路-AcWing题库给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 代码随想录算法训练营Day61 || 图论part 10
傲世尊
图论
Bellman_ford队列优化算法:又叫做SPFA,在做松弛操作时,只更新以目前操作节点为出发点能到达的节点的minDist,避免多余操作。判断负权回路:如果有负权回路,进行第n次松弛的时候,minDist数组会有变化。最多经过k个城市,那么就对所有边进行k+1次松弛即可。
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 课上题目代码
顾客言
c++图论最短路
dijkstra和spfa区别:dikstra是基于贪心的思想,每次选择最近的点去更新其它点,过后就不再访问。而在spfa算法中,只要有某个点的距离被更新了,就把它加到队列中,去更新其它点,所有每个点有被重复加入队列的可能。或者跟具体的说区别在于diikstra总是要找到dist最小的元素来作为父节点更新其他点,而不是直接取队头元素(当然如果是优先队列也是取队头元素):更新的顺序不同主要导致的差异
- 算法刷题day13
lijiachang030718
#算法刷题算法动态规划
目录引言一、蜗牛引言今天时间有点紧,只搞了一道题目,不过确实搞了三个小时,才搞完,主要是也有点晚了,也好累啊,不过也还是可以的,学了状态DP,把建图和spfa算法熟悉了一下,明天再接再厉。一、蜗牛标签:状态机DP思路1:这个因为还没学所以第一时间没有这个DP的概念就拿最短路做的,spfa算法过了两个数据(总共十个),然后其实没问题,就是图建的不太完善,建图是觉得每次传送结束都要回到x轴,现在觉得可
- 找负环(图论基础)
wa的一声哭了
图论SPFA图论springbootfastapidjangoflasknumpyspring
文章目录负环spfa找负环方法一方法二实际效果负环环内路径上的权值和为负。spfa找负环两种基本的方法统计每一个点的入队次数,如果一个点入队了n次,则说明存在负环统计当前每个点中的最短路中所包含的边数,如果当前某个点的最短路所包含的边数大于等于n,也说明存在负环实际上两种方法是等价的,都是判断是否路径包含n条边,nnn条边的话就有n+1n+1n+1个点用的更多的还是第二种方法。方法一cnt[x]:
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 【第二十二课】最短路:多源最短路floyd算法(acwing-852 spfa判断是否存在负环 / acwing-854 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录acwing-852代码如下一些解释acwing-854foyld算法思想代码如下一些解释acwing-852在spfa求最短路的算法基础上进行修改。代码如下#include#include#include#includeusingnamespacestd;constintN=2010,M=10010;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N],
- 【第二十二课】最短路:bellman_ford / spfa算法 (acwing-851 / acwing-853 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录前言acwing-853bellman_ford算法的思想代码如下一些解释acwing-851spfa算法思想代码如下一些解释前言由于权重可以表示不同的度量,例如距离、时间、费用等,具体取决于问题的背景,因此会存在一些权值为负数的题目。也就是存在负权边的最短路问题。dijkstra算法由于每次都选择当前最短路径的节点进行扩展,并不能解决带有负权值的最短路问题。会存在如下图这样的问题根据dijk
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round