UVA 11881 Internal Rate of Return(数学+二分)

In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero. Formally, given TCF0CF1, ..., CFT, then IRR is the solution to the following equation:

 

 

NPV =  CF 0 +   +   +  K +   = 0

 

Your task is to find all valid IRRs. In this problem, the initial cash-flow CF0 < 0, while other cash-flows are all positive (CFi > 0 for all i = 1, 2,...).

Important: IRR can be negative, but it must be satisfied that IRR > - 1.

Input 

There will be at most 25 test cases. Each test case contains two lines. The first line contains a single integer T ( 1T10), the number of positive cash-flows. The second line contains T + 1 integers: CF0CF1,CF2, ..., CFT, where CF0 < 00 < CFi < 10000 ( i = 1, 2,..., T). The input terminates by T = 0.

Output 

For each test case, print a single line, containing the value of IRR, rounded to two decimal points. If noIRR exists, print ``No" (without quotes); if there are multiple IRRs, print ``Too many"(without quotes).

 

题目大意:给出CF[0]<0,CF[i]>0,i>0,求IRR(IRR>-1)令NPV = 0.

思路:设f(IRR) = NPV,这就变成了一个函数,稍微观察一下,可以发现当IRR∈(-1, +∞)的时候是单调递减的(好像是吧做完忘了),这样我们就可以二分答案0点了。当IRR无限接近-1的时候,f(IRR)→+∞(好像是吧),当IRR→+∞时,f(IRR)→CF[0]<0,令left = -1、right = 1e5(我也不知道该取什么我随便取的然后AC了),随便二分一下就好。

PS:恩?说完了?那什么时候输出No和Too many啊?关于这个坑爹的问题,看完前面的分析,笔者完全不知道什么时候会出现这两个答案,于是妥妥地没将这两个东西写进代码然后AC了。这里还有一个小技巧,题目的样例完全没有出现No和Too many这两种答案,很可能说明这两种答案都是不存在的。比如很多的题目说如果什么什么得不到答案就输出-1那样,它的样例大多都会有一个是输出-1的,当然这不是绝对的……

 

代码(15MS):

 1 #include <cstdio>

 2 #include <cstring>

 3 #include <algorithm>

 4 #include <iostream>

 5 #include <cmath>

 6 using namespace std;

 7 

 8 const int MAXN = 13;

 9 const double EPS = 1e-4;

10 

11 inline int sgn(double x) {

12     if(fabs(x) < EPS) return 0;

13     return x > 0 ? 1 : -1;

14 }

15 

16 int CF[MAXN];

17 int T;

18 

19 double f(double IRR) {

20     double ret = CF[0], tmp = 1 + IRR;

21     for(int i = 1; i <= T; ++i) {

22         ret += CF[i] / tmp;

23         tmp = tmp * (1 + IRR);

24     }

25     return ret;

26 }

27 

28 double solve() {

29     double ans = -2;

30     double L = -1, R = 1e5;

31     while(R - L > EPS) {

32         double mid = (R + L) / 2;

33         if(sgn(f(mid)) == 1) L = mid;

34         else R = mid;

35     }

36     return ans = L;

37 }

38 

39 int main() {

40     while(scanf("%d", &T) != EOF) {

41         if(T == 0) break;

42         for(int i = 0; i <= T; ++i) scanf("%d", &CF[i]);

43         //double t; while(cin>>t) cout<<f(t)<<endl;

44         printf("%.2f\n", solve());

45     }

46 }
View Code

 

你可能感兴趣的:(return)