STM32时钟分析

[转]Stm32时钟分析

该分析材料大部分来自opendev论坛,我所做的只不过是加上一些自己的分析和整理,由于个人能力有限,纰漏之处在所难免,欢迎指正。

Stm32时钟结构图如下,http://www.openedv.com/posts/list/302.htm

STM32时钟分析_第1张图片

对上图的分析如下:

重要的时钟:
  PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚;
      1
HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率)    精度较差
      2HSE:高速外部时钟信号 精度高来源(1)HSE外部晶体/陶瓷谐振器(晶振)  (2)HSE用户外部时钟        
      3
LSE:低速外部晶体 32.768kHz主要提供一个精确的时钟源一般作为RTC时钟使用
STM32中,有五个时钟源,为HSIHSELSILSEPLL
  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz
  ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz
  ③、LSI是低速内部时钟,RC振荡器,频率为40kHz
  ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
  ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz
  其中40kHzLSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz72MHz
  另外,STM32还可以选择一个时钟信号输出到MCO(PA8)上,可以选择为PLL输出的2分频、HSIHSE、或者系统时钟。
  系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择12481664128256512分频。其中AHB分频器输出的时钟送给5大模块使用:
  ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟
  ②、通过8分频后送给Cortex的系统定时器时钟。
  ③、直接送给Cortex的空闲运行时钟FCLK
  ④、送给APB1分频器。APB1分频器可选择124816分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)234倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器234使用。
  ⑤、送给APB2分频器。APB2分频器可选择124816分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2468分频。
  在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
  需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2
  连接在APB1(低速外设)上的设备有:电源接口、备份接口、CANUSBI2C1I2C2UART2UART3SPI2、窗口看门狗、Timer2Timer3Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
  连接在APB2(高速外设)上的设备有:UART1SPI1Timer1ADC1ADC2、所有普通IO(PA~PE)、第二功能IO口。
涉及的寄存器:
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct
{
vu32 CR;                  //HSI,HSE,CSS,PLL
等的使能
vu32 CFGR;              //PLL
等的时钟源选择以及分频系数设定
vu32 CIR;                // 清除/使能时钟就绪中断
vu32 APB2RSTR;      //APB2线上外设复位寄存器
vu32 APB1RSTR;      //APB1线上外设复位寄存器
vu32 AHBENR;         //DMASDIO等时钟使能
vu32 APB2ENR;       //APB2线上外设时钟使能
vu32 APB1ENR;      //APB1线上外设时钟使能
vu32 BDCR;           //备份域控制寄存器
vu32 CSR;           
} RCC_TypeDef;
可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解,然后对照我们的《STM32不完全手册》的系统时钟配置函数void Stm32_Clock_Init(u8 PLL)一同来学习。

 

 

具体配置过程:

第一步:

复位并配置向量表。

函数MYRCC_DeInit();

下面对该函数进行分析:

(1)       设置外设复位寄存器:RCC->APB1RSTR = 0x00000000

该寄存器中包含dac,电源复位,定时器等外设复位设置,某位为1表示对相应外设复位。开机启动时将该寄存器数据清空。

(2)       设置外设复位寄存器:RCC->APB2RSTR = 0x00000000

同第一步外设复位寄存器的设置。

解答:

RCC->APB1RSTR = 0x00000000;//复位结束     
RCC->APB2RSTR = 0x00000000; 
这里的复位结束具体是什么意思??我把它注释掉后发现也是可以运行的

1是复位.0当然是不复位了
不复位那就是复位结束了.

(3)       睡眠模式闪存和sram时钟使能,其他关闭。用于使用sram Sram相当于pc的内存。

STm32有三种启动模式:

1,ISP模式.这种模式就是STM32复位后就执行固化在内部的BOOTLOADER程序(固化的,我们无法读写.),然后等待串口数据,从而实现串口bootloader功能.
这种模式不会从用户存储区启动(除非用串口控制其从0X08000000启动),所以在更新了代码之后,需要设置为其他模式(FLASH模式).
2,FLASH启动模式.这种模式直接从0X08000000启动,也就是我们自己编写的代码的启动方式了.正常情况都应该用这种.
3,SRAM启动模式.这种模式我没有用过,是从0X20000000启动的,也就是说在sram模式开始之前,你要确保SRAM里面已经有代码了,否则就是死机.

 

RCC->AHBENR = 0x00000014

(4)       设置外设时钟使能寄存器:

RCC->APB1ENR = 0x00000000;

RCC->APB2ENR = 0x00000000; 将所有外设全部关闭

(5)       使能内部高速HSION

RCC->CR |=0x00000001;

stm32的时钟启动过程。
启动过程是:
1
,首先使用内部时钟(这也是为什么你不接晶振也可以下载代码了)。
2
,尝试开启外部时钟.
3
,如果开启成功,则使用外部时钟,否则使用内部。
4
,做其他事情。
当然以上代码都需要你自己写代码实现,当然内部时钟是默认的时钟,你不开启也可以.

(6)          复位SW,HPRE,PPRE1,PPRE2,ADCPRE,MCO

RCC->CFGR &= 0xF8FF0000;

这步有什么意思呢,我的理解是。Cfgr寄存器主要用于对时钟分频的控制,见下图:

STM32时钟分析_第2张图片

 

通过该步的配置:

首先配置MCO无输出,MCO是什么呢?是指可以将stm32的内部时钟通过IO口引脚输出出去,如上图就可以看到,对cfgr的配置,可以有四种mco输出,分别是将pllclk两分频后输出,hsi(片内时钟)输出等。

其次:配置ADCPRE就是上图中AHB分频器线面的ADC

再次:配置ppre2也就是高速外部时钟APB2,这里设成不分频。高速外部时钟主要驱动一些高速外设,这个在APB2ENR时钟控制寄存器中有介绍

再次:配置PPRE1配置低速外部时钟分频APB1这里也全部设成不分频。

再次:配置HPRE。这几个位主要用来配置AHB这个寄存器的分频系数这里也设置成不分频。也就是说上图SYSCLKAHB没有分频。

最后:配置SW,以及SWS。表示启用HIS作为系统时钟。

到这一步,经过分析得知,RCC->CFGR &= 0xF8FF0000;主要是用来配置ahb等各个分频器的设置,以及将片内时钟作为系统内部时钟。

(6)       关闭HSEON,CSSON,PLLON

RCC->CR &= 0xFEF6FFFF;

通过分析CR寄存器可以看出,该寄存器主要涉及三个时钟PLL,CSS,HSE

(7)       复位HSEBYP.

RCC->CR &= 0xFFFBFFFF;这一步有什么作用呢?查询数据手册57页可知,外部时钟源HSE有两种模式,HSEBYP设置为0时,是选择外部晶体作为外部时钟源这种时钟更加精准,当然也是和外部电路有关的。当然因为第(6)步已经设置了HSEON关闭了,所以这一步才可自由设置HSEBYP

(8)       复位PLLSRC,PLLXTPRE,PLLMUL and USBPRE

RCC->CFGR &= 0xFF80FFFF;

注意:在这一部中可能会有这样的疑问:

RCC->CFGR &= 0xFF80FFFF;
PLLSRC=0 HSI
振荡器时钟经2分频后作为PLL输入时钟
PLLXTPRE=0
HSE分频器作为PLL输入,HSE不分频
这样不冲突吗?

答案是:以最后配置为准,就是最后一次配置会改变前一次的配置,所以说以最后一次配置为准。

也就是说后文还有其他代码对其进行定义。那干嘛还要怎么重复配置呢?

有时候是有用的。比如你想让stm32超频一会,然后又恢复正常运行,这就有用了。

(9)       关闭所有中断

RCC->CIR = 0x00000000;

(10)   配置向量表

#ifndef VECT_TAB_RAM

 MY_NVIC_SetVectorTable(NVIC_VectTab_RAM,0x0);

#else

 MY_NVIC_SetVectorTable(NVIC_VextTab_FLASH,0x0);

#endif

 

下面对该函数分析:

//函数功能:设置向量表偏移地址

//NVIC_VectTab:基址

//Offset:偏移量

void MY_NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset) 
{
   //检查参数合法性
 assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
 assert_param(IS_NVIC_OFFSET(Offset));   
 SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器
 //用于标识向量表是在CODE区还是在RAM区
}
前面两行是用来检查参数合法性,这里不作分析。重点看第三行

配置这个向量表有什么用?相见cortexm3权威指南113页向量表的解释

这里

#define NVIC_VectTab_RAM             ((u32)0x20000000)

#define NVIC_VectTab_FLASH           ((u32)0x08000000)

Offset的值为0x0,为偏移地址,地址必须能被64 * 4 = 256整除,具体请看权威手册113页

 SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器的疑问如下:

SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器。
既然是设置NVIC的向量表偏移量,为什么还要和NVIC_VectTab相或呢。只设置OFFSET不就可以了吗,另外VTOR设置只有BIT【28:7】有作用啊,相或以后也放不下这么多位吧?

这个是基址。
那个7~28的,你能定义一个28位的数据出来嘛?

VTOR设置只有BIT【28:7】,你把(u32)0x1FFFFF80二进制看看是不是【28:7】。
然后再看下面一段话:

 

   <<权威指南>>第一百零四页,有这么一段话:
    NVIC
中有一个寄存器,称为向量表偏移量寄存器(在地址0xE000_ED08处),通过修改它的值就能定位向量表。但必须注意的是:向量表的起始地址是有要求的:必须先求出系统中共有多少个向量,再把这个数字向上增大到是2的整次幂,而起始地址必须对齐到后者的边界上。例如,如果一共有32个中断,则共有32+16(系统异常)=48个向量,向上增大到2的整次幂后值为64,因此地址
地址必须能被64*4=256整除,从而合法的起始地址可以是:0x0, 0x100, 0x200等。
    向量表偏移量寄存器,也就是SCB->VTOR.它的第29,用来标识向量表是在CODE区还是RAM,从而0X1,就是最高3位不去动,这好理解.  但是低位,根据上面这段话的理解,STM32自己有60个中断,加上CM316,总共有76个中断,扩大到2的整次幂,那就是128,然后再乘以4,得到512,也就是0X200.根据这样计算,合法的偏移地址应该是0X0,0X200,0X400,0X600...因此,在此处应该&0X1FFF FE00.才对.
   
以上是我的理解.实际上确是&0X1FFF FF80;这点,我也有疑问.

答案:cortex-m3权威指南上介绍 bit 28-7为向量表的起始地址。所以低7位没有用到,所以&0X80,为的就是将低七位清零。但这里写&0X1FFF FE00,也能达到清零的目的。至于地址必须是512的整数只要offset这个参数注意就可以了。

 

下面我们回到例说stm32这本书61页的Stm32_Clock_Init()函数:

经过上面配置完毕后,下面开始配置外部时钟。

Ministm32开发板目前的实都是采用高速外部时钟作为时钟源,在经过MYRCC_Deinit()先将外部时钟源关闭,然后在cfgr重新配置之后,下面就准备开启高速外部时钟。

(11)      RCC->CR |= 0x00010000;外部高速时钟使能HSEON,前面说过以最后一次设置为准,所以自打这一步开始HSE作为了外部时钟。

(12)  等待外部时钟是否就绪

While(!(RCC->CR>>17));    (其实这一步的作用和while(RCC->CR&(u32)(1<<17));是一样的,因为在MYRCC_Deinit()中的18位至31位全为0了,当然在论坛中http://www.openedv.com/posts/list/1943.htm23楼也承认While(!(RCC->CR>>17)这样写有点轻率,23楼这样写道

对此,原子哥也说了写成(RCC-CR>>17)&0X01比较合适,但我感觉RCC-CR>>17是不准确的,比方说如果第十八位是1,那么右移17位后不管时钟是否就绪,表达式“RCC-CR>>17”的结果始终为真,这样while(!(RCC-CR>>17))不就没有意义了吗?所以写成(RCC-CR>>17)&0X01才是最准确的

)

(13)  配置APB1/2=DIV2AHB = DIV1

RCC->CFGR = 0x00000400;

(14)      设置PLL分频

PLL -=2;

RCC->CFGR = PLL <<18;

设置PLL 9倍频

这里还涉及到了一个问题,如下

其实,这里今天林妹妹问了一个比较专业的问题,那就是PLL是一个u8的数据类型,为什么在这里可以右移18位呢?不是早超出了么?其实,我们看看汇编代码就明白了,汇编代码如下: 219: RCC->CFGR|=PLL<<18; //设置PLL 2~16 0x08000618 4608 MOV r0,r1 0x0800061A 6840 LDR r0,[r0,#0x04] 0x0800061C EA404084 ORR r0,r0,r4,LSL #18 0x08000620 6048 STR r0,[r1,#0x04]可以看到,这个移位操作,是在R0R1里面进行的,r0r1均是32位的寄存器,所以,这里的移位操作并不会产生错误(结果是赋值给32位的寄存器:RCC->CFGR).

(15)      FLASH->ACR |= 0x32 //flash 2个延时周期。FLASH->ACR|=0x32是为了使频率匹配,

//具体见《STM32闪存编程》

(16)      打开PLLON

RCC->CR|=0x01000000;

(17)      等待PLL锁定

while(!((RCC->CR>>25)&0x01));

(18)      PLL作为系统时钟

RCC->CFGR |= 0x00000002;

(19)      等待PLL作为系统时钟设置成功

Unsigned char Temp = 0;

While(Temp!=0x02)

{

   Temp = RCC->CFGR>>2;

   Temp &= 0x03;

}

其实这段代码就是判断SWS,等待系统时钟成功转为PLL时钟。

 

结合上面的分析已经明了STM32时钟一个始终配置过程,主要流程图如下:

其实个人感觉不用想mini32中自带例程配置有一些没有必要,所以自己改动了一些,发现在跑马灯程序中也能运行,目前只在跑马灯程序中试验过:

 

第一步:

     RCC->APB1RSTR = 0x00000000;//复位结束                  

     RCC->APB2RSTR = 0x00000000;

第二步:

    RCC->AHBENR = 0x00000014;  //睡眠模式闪存和SRAM时钟使能.其他关闭.

第三步:关闭所有外设时钟

    RCC->APB2ENR = 0x00000000; //外设时钟关闭.                    

    RCC->APB1ENR = 0x00000000; 

为什么要这步因为在配置cfgr以及cr等寄存器时,一些外设时钟要关闭。

第四步:

  RCC->CR &= 0xFEF2FFFF;  //该补的主要作用是开启内部HSION,且关闭HSECSSPLLON

第五步:设置分频寄存器,配置分频,使能PLLSRC ON

 

RCC->CFGR=0X00000400; //APB1/2=DIV2;APB2=DIV1;AHB=DIV1;查询中文手册可知,

apb1最大为36MHZ所以这里要对其分频,因为经过这番设置PLLMUL输出后为72MHZ所以为,这里要让APB1/2=DIV236MHZ

PLL-=2;//抵消2个单位

RCC->CFGR|=PLL<<18;   //设置PLL 2~16 设置PLL9倍频

RCC->CFGR|=1<<16;   //PLLSRC ON设置HSE为输入时钟,因为第cfgr17位也为0,所以HSE输入到PLLSRC的就是8M

 

此时hse8MHZ显然经过上面的9倍频,经分析可知输出到AHBSYSCLK72MHZ。因为前面设置AHB不分频,所以AHB输出也是72MHZapb1因为前面分频了所以输出后为36MHZapb272MHZ

 

第七步:

FLASH->ACR|=0x32;   //FLASH 2个延时周期

第八步:

     RCC->CIR = 0x00000000;     //关闭所有中断

第九步:

     //配置向量表                        

#ifdef  VECT_TAB_RAM

     MY_NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);

#else  

     MY_NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);   //这里用到的就是flash启动

#endif

第十步:

     RCC->CR|=0x00010000;  //外部高速时钟使能HSEON,注意使能hseon之前外部时钟不能直接或间接的为系统时钟,也就是说cfgr中的SW位先为0,因为在第五步已经设为0了,所以这里无需顾虑。

     while(!(RCC->CR>>17));//等待外部时钟就绪

第十一步:打开PLL

     RCC->CR|=0x01000000;  //PLLON

     while(!(RCC->CR>>25));//等待PLL锁定

第十二步:

     RCC->CFGR|=0x00000002;//PLL作为系统时钟      

     while(temp!=0x02)     //等待PLL作为系统时钟设置成功

     {  

            temp=RCC->CFGR>>2;

            temp&=0x03;

     }

 /*上述代码较乱,下面将代码组合一番方便看*/

结合Stm32_Clock_Init()时钟配置过程,我总结时钟配置就是大致如下步骤:

关所有外设时钟,
(1)使能HSI并关闭HSE,PLL,CSS,配置分频寄存器,并且在crgr中将系统时钟设为HSI。
(2)关所有中断。
(3)配置向量表。
(4)使能HSE,CR中等待设置完毕。
(5)打开PLL,CR中等待PLL开启。
(6)在cfgr中sws位等待PLL成为系统时钟。


结合上述方式,我改写的代码如下:
void Stm32_Clock_Init111(u8 PLL)
{

 unsigned char temp=0; 
 RCC->APB1RSTR = 0x00000000;//复位结束   
 RCC->APB2RSTR = 0x00000000; 
   
 RCC->AHBENR = 0x00000014;  //睡眠模式闪存和SRAM时钟使能.其他关闭.   
 RCC->APB2ENR = 0x00000000; //外设时钟关闭.      
 RCC->APB1ENR = 0x00000000;  
 
 RCC->CR &= 0xFEF2FFFF;  //该步的主要作用是开启内部HSION,且关闭HSE,CSS,PLLON                 
 
 RCC->CFGR=0X00000400; //APB1=DIV2;APB2=DIV1;AHB=DIV1; HSE设置为不分频,CFGR的主要作用是配置分频,分频之前当然要把cr中HSE时钟全关闭只开启HSI时钟。当然还有一个重要的作用是,设置当前是谁作为系统时钟,就是SW位。


 PLL-=2;//抵消2个单位
 RCC->CFGR|=PLL<<18;   //设置PLL值 2~16
 RCC->CFGR|=1<<16;   //PLLSRC ON

 FLASH->ACR|=0x32;   //FLASH 2个延时周期
      
 RCC->CIR = 0x00000000;     //关闭所有中断
 //配置向量表     
#ifdef  VECT_TAB_RAM
 MY_NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else  
 MY_NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);   //这里用到的就是flash启动
#endif
  
 RCC->CR|=0x00010000;  //外部高速时钟使能HSEON
 while(!(RCC->CR>>17));//等待外部时钟就绪
 RCC->CR|=0x01000000;  //PLLON
 while(!(RCC->CR>>25));//等待PLL锁定
 RCC->CFGR|=0x00000002;//PLL作为系统时钟 
 while(temp!=0x02)     //等待PLL作为系统时钟设置成功
 {  
  temp=RCC->CFGR>>2;
  temp&=0x03;
 }
    
}

 

 

你可能感兴趣的:(stm32)