【原创】开源Math.NET基础数学类库使用(10)C#进行基本数据统计

               本博客所有文章分类的总目录:【总目录】本博客博文总目录-实时更新 

开源Math.NET基础数学类库使用总目录:【目录】开源Math.NET基础数学类库使用总目录

前言

  数据集的基本统计计算是应用数学,以及统计应用中最常用的功能。如计算数据集的均值,方差,标准差,最大值,最小值,熵等等。Math.NET中的MathNet.Numerics.Statistics命名空间就包括了大量的这些统计计算的函数。今天就为大家介绍这方面的内容。这样就可以使用C#进行数据集合的相关统计计算,以前在matlab中一个函数可以解决的问题,在C#里面也可以一个函数解决。所以Math.NET很大程度上替代了Matlab的基础数据计算功能,当然是不能和Matlab媲美的。

  如果本文资源或者显示有问题,请参考 本文原文地址http://www.cnblogs.com/asxinyu/p/4301252.html

1.Math.NET的统计函数类

  Math.NET在MathNet.Numerics.Statistics命名空间中的基本数据统计类及作用介绍如下,静态类中的方法基本上都可以直接作为扩展方法使用:

1.Statistics类,基础的数据集统计,如最小值,最大值,平均值,总体方差,标准差等等。为静态类,注意Statistics是一个总体的统计类,其很多函数的调用都是根据数据集的类型分开调用StreamingStatistics和ArrayStatistics;

2.StreamingStatistics,静态类,是流数据集的统计,适合于一些大数据集,不能一次性读入内存的情况;

3.ArrayStatistics,静态类,是普通的未排序数组数据集的统计,一次性都加载在内存,因此计算比较方便;

4.SortedArrayStatistics,静态类,是排序数组数据集的统计;

5.DescriptiveStatistics,非静态类,与Statistics类的功能类似,但不一样的是Statistics是静态方法,一一计算,而该类是初始化的时候,可以一次性计算所有的指标,直接通过属性进行获取。

6.RunningStatistics,非静态类,和Statistics类功能差不多,但允许动态更新数据,进行再次计算;

2.统计函数类的实现

  上述有多个统计类,但核心的代码不多。上述多个实现,也只是为了满足多种不同的需求。我们一起看一个基本实现:ArrayStatistics类,类的核心实现,代码过多,只列举了代码原型,和注释:

  1 /// <summary>

  2 /// 对未排序的数组进行统计操作  警告: Methods with the Inplace-suffix may modify the data array by reordering its entries.

  3 /// </summary>

  4 public static class ArrayStatistics

  5 {

  6     /// <summary>返回未排序数组的最小值,如果数据为空或者元素为NaN,则返回NaN.</summary>

  7     /// <param name="data">简单的未排序数组.</param>

  8     public static double Minimum(double[] data) 

  9 

 10     /// <summary>返回未排序数组的最小值,如果数据为空或者元素为NaN,则返回NaN.</summary>

 11     /// <param name="data">简单的未排序数组.</param>

 12     public static float Minimum(float[] data) ;

 13 

 14     /// <summary>返回未排序数组的最大值,如果数据为空或者元素为NaN,则返回NaN.</summary>

 15     /// <param name="data">简单的未排序数组.</param>

 16     public static double Maximum(double[] data) ;

 17 

 18     /// <summary>返回未排序数组的最大值,如果数据为空或者元素为NaN,则返回NaN.</summary>

 19     /// <param name="data">简单的未排序数组.</param>

 20     public static float Maximum(float[] data);

 21 

 22     /// <summary>计算未排序数组的算术平均值,如果数据是空的或者元素为NaN</summary>

 23     /// <param name="data">简单的未排序数组.</param>

 24     public static double Mean(double[] data) ;

 25 

 26     /// <summary>

 27     /// 计算未排序数组的无偏总体方差:对大小为N的数据集,使用N-1进行标准化.

 28     ///  (Bessel's correction). 贝塞尔(无偏估计)校正系数

 29     /// 如果数据连小于2,或者数据为NaN,则返回NaN

 30     /// </summary>

 31     /// <param name="samples">简单的未排序数组.</param>

 32     public static double Variance(double[] samples) ;

 33     

 34     /// <summary>

 35     /// 计算为排序数组的总体方差.对大小为N的数据集,使用N进行标准化.因此是有偏差的

 36     /// 如果数据为NaN,则返回NaN

 37     /// </summary>

 38     /// <param name="population">简单的未排序数组.</param>

 39     public static double PopulationVariance(double[] population) ;

 40 

 41     /// <summary>

 42     /// 计算无偏总体标准差:对大小为N的数据集,使用N-1进行标准化.

 43     /// 如果数据连小于2,或者数据为NaN,则返回NaN

 44     /// </summary>

 45     /// <param name="samples">简单的未排序数组.</param>

 46     public static double StandardDeviation(double[] samples)

 47     {

 48         return Math.Sqrt(Variance(samples));

 49     }

 50 

 51     /// <summary>

 52     /// 计算总体标准差:对大小为N的数据集,使用N进行标准化.

 53     /// 如果数据为NaN,则返回NaN.

 54     /// </summary>

 55     /// <param name="population">简单的未排序数组.</param>

 56     public static double PopulationStandardDeviation(double[] population)

 57     {

 58         return Math.Sqrt(PopulationVariance(population));

 59     }

 60 

 61     /// <summary>计算算术平均值和无偏总体偏差,是2个方法的综合</summary>

 62     /// <param name="samples">简单的未排序数组.</param>

 63     public static Tuple<double, double> MeanVariance(double[] samples)

 64     {

 65         return new Tuple<double, double>(Mean(samples), Variance(samples));

 66     }

 67 

 68     /// <summary>计算算术平均值和无偏总体标准差,是2个方法的综合</summary>

 69     /// <param name="samples">简单的未排序数组.</param>

 70     public static Tuple<double, double> MeanStandardDeviation(double[] samples)

 71     {

 72         return new Tuple<double, double>(Mean(samples), StandardDeviation(samples));

 73     }

 74 

 75     /// <summary>计算2个数组的无偏协方差:对大小为N的数据集,使用N-1进行标准化.</summary>

 76     /// <param name="samples1">第一个数组.</param>

 77     /// <param name="samples2">第二个数组.</param>

 78     public static double Covariance(double[] samples1, double[] samples2) ;

 79 

 80     /// <summary>计算2个数组的总体协方差:对大小为N的数据集,使用N进行标准化.</summary>

 81     /// <param name="population1">第一个数组.</param>

 82     /// <param name="population2">第二个数组.</param>

 83     public static double PopulationCovariance(double[] population1, double[] population2) ;

 84 

 85     /// <summary>计算数组的均方根误差(RMS).</summary>

 86     /// <param name="data">简单的未排序数组.</param>

 87     public static double RootMeanSquare(double[] data) ;

 88 

 89     /// <summary>计算未排序数组的 顺序统计量(1..N). 注意:会导致data数组的值会重新排序.</summary>

 90     /// <param name="data">数组,未排序,计算过程会被排序.</param>

 91     /// <param name="order">从1开始的顺序统计,1 - N 之间.</param>

 92     public static double OrderStatisticInplace(double[] data, int order) ;

 93 

 94     /// <summary>计算未排序数组的中位数:data数组会被重新排序.</summary>

 95     /// <param name="data">数组,未排序,计算过程会被排序.</param>

 96     public static double MedianInplace(double[] data)

 97     {

 98         var k = data.Length/2;

 99         return data.Length.IsOdd()

100             ? SelectInplace(data, k)

101             : (SelectInplace(data, k - 1) + SelectInplace(data, k))/2.0;

102     }

103 

104     /// <summary>

105     /// 计算未排序数组的p百分位数:如果需要非整数百分比,使用分位数替代.  

106     /// Approximately median-unbiased regardless of the sample distribution (R8).

107     /// WARNING: 计算过程会对data排序.

108     /// </summary>

109     /// <param name="data">数组,未排序,计算过程会被排序.</param>

110     /// <param name="p">p分为点,0 - 100 之间.</param>

111     public static double PercentileInplace(double[] data, int p)

112     {

113         return QuantileInplace(data, p/100d);

114     }

115 

116     /// <summary>

117     /// 计算未排序数组的第一个四分位数的值

118     /// Approximately median-unbiased regardless of the sample distribution (R8).

119     /// WARNING: 计算过程会对data排序.

120     /// </summary>

121     /// <param name="data">数组,未排序,计算过程会被排序.</param>

122     public static double LowerQuartileInplace(double[] data)

123     {

124         return QuantileInplace(data, 0.25d);

125     }

126 

127     /// <summary>

128     /// 计算未排序数组的第三个四分位数的值

129     /// Approximately median-unbiased regardless of the sample distribution (R8).

130     /// WARNING: 计算过程会对data排序.

131     /// </summary>

132     /// <param name="data">数组,未排序,计算过程会被排序.</param>

133     public static double UpperQuartileInplace(double[] data)

134     {

135         return QuantileInplace(data, 0.75d);

136     }

  当然不是所有人都会用到这些函数,一般人可能只会用到一些常用的,如均值,方差等等。详细的使用,可以看下面的例子。

3.统计函数使用的例子1

  上面已经提到,对于静态类中的方法,可以根据需要使用扩展方法,或者直接调用该函数进行计算相应的统计指标。这种事情是非常简单的,看一个综合的例子:

 1 //先生成数据集合

 2 var chiSquare = new ChiSquared(5);

 3 Console.WriteLine(@"2. Generate 1000 samples of the ChiSquare(5) distribution");

 4 var data = new double[1000];

 5 for (var i = 0; i < data.Length; i++)

 6 {

 7     data[i] = chiSquare.Sample();

 8 }

 9 

10 //使用扩展方法进行相关计算

11 Console.WriteLine(@"3.使用扩展方法获取生成数据的基本统计结果");

12 Console.WriteLine(@"{0} - 最大值", data.Maximum().ToString(" #0.00000;-#0.00000"));

13 Console.WriteLine(@"{0} - 最小值", data.Minimum().ToString(" #0.00000;-#0.00000"));

14 Console.WriteLine(@"{0} - 均值", data.Mean().ToString(" #0.00000;-#0.00000"));

15 Console.WriteLine(@"{0} - 中间值", data.Median().ToString(" #0.00000;-#0.00000"));

16 Console.WriteLine(@"{0} - 有偏方差", data.PopulationVariance().ToString(" #0.00000;-#0.00000"));

17 Console.WriteLine(@"{0} - 无偏方差", data.Variance().ToString(" #0.00000;-#0.00000"));

18 Console.WriteLine(@"{0} - 标准偏差", data.StandardDeviation().ToString(" #0.00000;-#0.00000"));

19 Console.WriteLine(@"{0} - 标准有偏偏差", data.PopulationStandardDeviation().ToString(" #0.00000;-#0.00000"));

20 Console.WriteLine();

结果如下:

1 3.使用扩展方法获取生成数据的基本统计结果

2  19.84215 - 最大值

3  0.20662 - 最小值

4  4.92818 - 均值

5  4.35988 - 中间值

6  9.34684 - 有偏方差

7  9.35619 - 无偏方差

8  3.05879 - 标准偏差

9  3.05726 - 标准有偏偏差

下面将介绍使用DescriptiveStatistics类直接进行所有指标计算的例子。 

4.统计函数使用的例子2

  使用DescriptiveStatistics的方法也很简单,直接使用数据数组进行初始化,然后根据属性获取对应的指标结果就可以了。如下代码:

 1 Console.WriteLine(@"4. 使用DescriptiveStatistics类进行基本的统计计算");

 2 var descriptiveStatistics = new DescriptiveStatistics(data);//使用数据进行类型的初始化

 3 //直接使用属性获取结果

 4 Console.WriteLine(@"{0} - Kurtosis", descriptiveStatistics.Kurtosis.ToString(" #0.00000;-#0.00000"));

 5 Console.WriteLine(@"{0} - Largest element", descriptiveStatistics.Maximum.ToString(" #0.00000;-#0.00000"));

 6 Console.WriteLine(@"{0} - Smallest element", descriptiveStatistics.Minimum.ToString(" #0.00000;-#0.00000"));

 7 Console.WriteLine(@"{0} - Mean", descriptiveStatistics.Mean.ToString(" #0.00000;-#0.00000"));

 8 Console.WriteLine(@"{0} - Variance", descriptiveStatistics.Variance.ToString(" #0.00000;-#0.00000"));

 9 Console.WriteLine(@"{0} - Standard deviation", descriptiveStatistics.StandardDeviation.ToString(" #0.00000;-#0.00000"));

10 Console.WriteLine(@"{0} - Skewness", descriptiveStatistics.Skewness.ToString(" #0.00000;-#0.00000"));

11 Console.WriteLine();

结果如下:

4. Compute the basic statistics of data set using DescriptiveStatistics class

 1.69649 - Kurtosis

 19.84215 - Largest element

 0.20662 - Smallest element

 4.92818 - Mean

 9.35619 - Variance

 3.05879 - Standard deviation

 1.15298 - Skewness

5.资源

  源码下载:http://www.cnblogs.com/asxinyu/p/4264638.html

  如果本文资源或者显示有问题,请参考 本文原文地址http://www.cnblogs.com/asxinyu/p/4301252.html 

你可能感兴趣的:(.net)