创建哈夫曼树
主要思想:
(1)对List集合中所有节点进行排序。
(2)找出List集合中权值最小的两个节点。
(3)以权值最小的两个节点作为子节点创建新节点。
(4)从List集合中删除权值最小的两个节点,将新节点添加到List集合中。
import java.util.*; public class HuffmanTree { public static class Node<E> { E data; double weight; Node leftChild; Node rightChild; public Node(E data , double weight) { this.data = data; this.weight = weight; } public String toString() { return "Node[data=" + data + ", weight=" + weight + "]"; } } public static void main(String[] args) { List<Node> nodes = new ArrayList<Node>(); nodes.add(new Node("A" , 40.0)); nodes.add(new Node("B" , 8.0)); nodes.add(new Node("C" , 10.0)); nodes.add(new Node("D" , 30.0)); nodes.add(new Node("E" , 10.0)); nodes.add(new Node("F" , 2.0)); Node root = HuffmanTree.createTree(nodes); System.out.println(breadthFirst(root)); } /** * 构造哈夫曼树 * @param nodes 节点集合 * @return 构造出来的哈夫曼树的根节点 */ private static Node createTree(List<Node> nodes) { //只要nodes数组中还有2个以上的节点 while (nodes.size() > 1) { quickSort(nodes); //获取权值最小的两个节点 Node left = nodes.get(nodes.size() - 1); Node right = nodes.get(nodes.size() - 2); //生成新节点,新节点的权值为两个子节点的权值之和 Node parent = new Node(null , left.weight + right.weight); //让新节点作为权值最小的两个节点的父节点 parent.leftChild = left; parent.rightChild = right; //删除权值最小的两个节点 nodes.remove(nodes.size() - 1); nodes.remove(nodes.size() - 1); //将新生成的父节点添加到集合中 nodes.add(parent); } //返回nodes集合中唯一的节点,也就是根节点 return nodes.get(0); } //将指定数组的i和j索引处的元素交换 private static void swap(List<Node> nodes, int i, int j) { Node tmp; tmp = nodes.get(i); nodes.set(i , nodes.get(j)); nodes.set(j , tmp); } //实现快速排序算法,用于对节点进行排序。从大到小的排序 private static void subSort(List<Node> nodes , int start , int end) { //需要排序 if (start < end) { //以第一个元素作为分界值 Node base = nodes.get(start); //i从左边搜索,搜索大于分界值的元素的索引 int i = start; //j从右边开始搜索,搜索小于分界值的元素的索引 int j = end + 1; while(true) { //找到大于分界值的元素的索引,或i已经到了end处 while(i < end && nodes.get(++i).weight >= base.weight); //找到小于分界值的元素的索引,或j已经到了start处 while(j > start && nodes.get(--j).weight <= base.weight); if (i < j) { swap(nodes , i , j); } else { break; } } swap(nodes , start , j); //递归左子序列 subSort(nodes , start , j - 1); //递归右边子序列 subSort(nodes , j + 1, end); } } public static void quickSort(List<Node> nodes) { subSort(nodes , 0 , nodes.size() - 1); } //广度优先遍历 public static List<Node> breadthFirst(Node root) { Queue<Node> queue = new ArrayDeque<Node>(); List<Node> list = new ArrayList<Node>(); if( root != null) { //将根元素入“队列” queue.offer(root); } while(!queue.isEmpty()) { //将该队列的“队尾”的元素添加到List中 list.add(queue.peek()); Node p = queue.poll(); //如果左子节点不为null,将它加入“队列” if(p.leftChild != null) { queue.offer(p.leftChild); } //如果右子节点不为null,将它加入“队列” if(p.rightChild != null) { queue.offer(p.rightChild); } } return list; } }
哈夫曼编码
规律:假如有N个叶子节点需要编码,最终得到的哈夫曼树一定有N层,哈夫曼编码得到的二进制码的最大长度为N-1。
import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Queue; import java.util.Scanner; public class HuffmanCoding { public static String writeString; public static class HNode { String data = ""; String coding = ""; @Override public String toString() { return "HNode [coding=" + coding + ", data=" + data + "]"; } public HNode(String data) { super(); this.data = data; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((data == null) ? 0 : data.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; HNode other = (HNode) obj; if (data == null) { if (other.data != null) return false; } else if (!data.equals(other.data)) return false; return true; } } public static class Node { HNode data; int weight; Node leftChild; Node rightChild; public Node(HNode data, int weight) { this.data = data; this.weight = weight; } public String toString() { return "Node[data=" + data + ", weight=" + weight + "]"; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((data == null) ? 0 : data.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Node other = (Node) obj; if (data == null) { if (other.data != null) return false; } else if (!data.equals(other.data)) return false; return true; } } public static void main(String[] args) { System.out.println("请输入字符串:"); Scanner scanner = new Scanner(System.in); HuffmanCoding.writeString = scanner.nextLine(); char[] chars = writeString.toCharArray(); List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < chars.length; i++) { Node t = new Node(new HNode(String.valueOf(chars[i])), 1); if (nodes.contains(t)) { nodes.get(nodes.indexOf(t)).weight++; } else { nodes.add(t); } } // System.out.println(nodes); Node root = HuffmanCoding.createTree(nodes); breadthFirst(root, nodes); for (int i = 0; i < chars.length; i++) { Node t = new Node(new HNode(String.valueOf(chars[i])), 1); System.out.print(nodes.get(nodes.indexOf(t)).data.coding); } } private static Node createTree(List<Node> nodess) { List<Node> nodes = new ArrayList<Node>(nodess); // 只要nodes数组中还有2个以上的节点 while (nodes.size() > 1) { quickSort(nodes); // 获取权值最小的两个节点 Node left = nodes.get(nodes.size() - 1); Node right = nodes.get(nodes.size() - 2); // 生成新节点,新节点的权值为两个子节点的权值之和 Node parent = new Node(new HNode(null), left.weight + right.weight); // 让新节点作为权值最小的两个节点的父节点 parent.leftChild = left; parent.rightChild = right; // 删除权值最小的两个节点 nodes.remove(nodes.size() - 1); nodes.remove(nodes.size() - 1); // 将新生成的父节点添加到集合中 nodes.add(parent); } // 返回nodes集合中唯一的节点,也就是根节点 return nodes.get(0); } public static void quickSort(List<Node> nodes) { subSort(nodes, 0, nodes.size() - 1); } private static void subSort(List<Node> nodes, int start, int end) { if (start < end) { Node base = nodes.get(start); int i = start; int j = end + 1; while (true) { while (i < end && nodes.get(++i).weight >= base.weight) ; while (j > start && nodes.get(--j).weight <= base.weight) ; if (i < j) { swap(nodes, i, j); } else { break; } } swap(nodes, start, j); // 递归左子序列 subSort(nodes, start, j - 1); // 递归右边子序列 subSort(nodes, j + 1, end); } } private static void swap(List<Node> nodes, int i, int j) { Node tmp; tmp = nodes.get(i); nodes.set(i, nodes.get(j)); nodes.set(j, tmp); } // 广度优先遍历 public static void breadthFirst(Node root, List<Node> nodes) { // System.out.println("我 "+nodes); Queue<Node> queue = new ArrayDeque<Node>(); List<Node> list = new ArrayList<Node>(); if (root != null) { // 将根元素入“队列” queue.offer(root); } while (!queue.isEmpty()) { // 将该队列的“队尾”的元素添加到List中 list.add(queue.peek()); Node p = queue.poll(); // 如果左子节点不为null,将它加入“队列” if (p.leftChild != null) { queue.offer(p.leftChild); p.leftChild.data.coding = p.data.coding + "0"; } else { // System.out.println(p+" "+p.data+" "+p.data.data+ // " "+p.data.coding); // System.out.println("nodes.indexOf(p)"+nodes.contains(p)); ((Node) nodes.get(nodes.indexOf(p))).data.coding = p.data.coding; } // 如果右子节点不为null,将它加入“队列” if (p.rightChild != null) { queue.offer(p.rightChild); p.rightChild.data.coding = p.data.coding + "1"; } // else { // nodes.get(nodes.indexOf(p)).data.coding=p.data.coding; // System.out.println("you "+p.data.coding); // } } } }