hdu1505(dp求最大子矩阵)

 

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1505

 

分析:
这题是HDU 1506 的加强版,定义一个二维数组,d[i][j]表示第i行j列元素在前i行中的最大高度。(以第一行为底)例如测试样例:
0 1 1 1 1 1                                                  0 1 1 1 1 1
1 1 1 1 1 1            (F=1,R=0,方便求和)        1 2 2 2 2 2
0 0 0 1 1 1            转化完就是右边矩阵            0 0 0 3 3 3
1 1 1 1 1 1                                                  1 1 1 4 4 4
1 1 1 1 1 1                                                  2 2 2 5 5 5
当然也有比较简单的以第一列为底,这样就可以在读取数据的循环中把a[i][j]赋值。
接下来就和 HDU 1506 一样了,逐行求最大矩形面积。
动态方程:l[j] r[j]分别表示左边界与右边界。(见上一篇:HDU 1506 Largest Rectangle in a Histogram)
l[j]=l[l[j]-1];
r[j]=r[r[j]-1];
 
#include <cstdio>

#include <cstring>

#include <cmath>

#include <iostream>

#include <algorithm>

#include <queue>

#include <cstdlib>

#include <vector>

#include <set>

#include <map>

#define LL long long

#define inf 1<<30

using namespace std;

char s[1010][1010];

int a[1005][1005],l[1010],r[1010];

int main()

{

    int T,t,n,m;

    cin>>T;

    while(T--)

    {

        cin>>n>>m;

        memset(a,0,sizeof(a));

        for(int i=1; i<=n; i++)

            for(int j=1; j<=m; j++)

            {

                cin>>s[i][j];

            }

        for(int i=1; i<=n; i++)

            for(int j=1; j<=m; j++)

            {



                if(s[i][j]=='F')a[i][j]=a[i-1][j]+1;

                else a[i][j]=0;

            }

        int ans=-1;

        for(int i=1;i<=n;i++)

        {

            l[1]=1;r[m]=m;

            for(int j=2;j<=m;j++)

            {

                t=j;

                while(t>1&&a[i][j]<=a[i][t-1])t=l[t-1];

                l[j]=t;

            }

            for(int j=m-1;j>=1;j--)

            {

                t=j;

                while(t<m&&a[i][j]<=a[i][t+1])t=r[t+1];

                r[j]=t;

            }

            for(int j=1;j<=m;j++)

                ans=max(ans,(r[j]-l[j]+1)*a[i][j]);

        }

        printf("%d\n",ans*3);

    }

}
View Code

 

你可能感兴趣的:(HDU)