- 主体分割技术,提升图像信息提取能力
在智能设备普及和AI技术进步的推动下,用户对线上互动的质量、个性化以及沉浸式体验的追求日益增强。例如,对于热衷于图片编辑或视频制作的用户来说,他们需要一种快速而简便的方法来将特定主体从背景中分离出来。HarmonyOSSDK基础视觉服务(CoreVisionKit)提供主体分割能力,可以检测出图片中区别于背景的前景物体或区域(即"显著主体"),并将其从背景中分离出来,适用于需要识别和提取图像主要信
- 未来AI视觉艺术,会替代人类设计师吗?
非知名人士
AI随想人工智能深度学习计算机视觉
废话不说,我们先通过代码示例,了解AI生成图像的基本过程以及如何控制图像的风格和质量。1.安装和设置环境首先,我们需要安装必要的库。确保你已经安装了torch、diffusers和transformers等库。pipinstalltorchtorchvisiondiffuserstransformers2.加载预训练模型在这个例子中,我们继续使用StableDiffusion模型,加载该模型并将其
- RK3568 OpenHarmony4.0 USB摄像头
敲嵌入式代码的
OpenHarmonyharmonyos
演示效果先看下最终效果视频OpenHarmony_V40_USB_camera开发环境本文基于如下开发环境进行开发调试:硬件:摄像头海康USB摄像头(HIKVISIONDS-E14)硬件:RK3568开发板处理器:RK3568CPU:四核64位Cortex-A55,主频最高达2.0GHzGPU:ARMG522EE,支持OpenGLES1.1/2.0/3.2,OpenCL2.0,Vulkan1.1,
- 国内的比较有名的机器视觉库有哪些?他们的内核是什么?
yuanpan
计算机视觉图像处理ai
国内机器视觉库近年来发展迅速,尤其在工业自动化领域涌现出多个知名平台。以下是国内主流机器视觉库及其内核技术的对比分析:1.海康威视(Hikvision)机器视觉平台代表产品:VisionMaster内核技术:自研算法:基础算法(如定位、测量)为自主研发,部分借鉴OpenCV优化。深度学习:集成自研深度学习框架(类似CNN架构),支持目标检测、分类等任务。硬件加速:依赖海康自研GPU芯片(如“深眸”
- 都是收费的,halcon与visionpro有什么区别?
yuanpan
计算机视觉图像处理
Halcon和VisionPro(通常指CognexVisionPro)是工业视觉领域的两大主流软件平台,它们在应用场景、易用性、市场占有率等方面各有特点。以下从多个维度进行对比:1.应用层面Halcon适用领域:广泛应用于高精度、复杂视觉任务,如半导体检测、医疗影像、3D重建、深度学习等。灵活性:提供丰富的算法库(如形态学、Blob分析、深度学习等),适合定制化需求高的场景。多平台支持:支持Wi
- 视觉Transformer架构的前沿优化技术与高效部署
点我头像干啥
Ai深度学习神经网络计算机视觉
引言近年来,Transformer架构在自然语言处理(NLP)领域取得了巨大成功,逐渐成为深度学习的主流模型之一。随着研究的深入,Transformer架构也开始在计算机视觉领域崭露头角,尤其是在图像分类、目标检测和图像生成等任务中表现出色。然而,视觉Transformer(VisionTransformer,ViT)在计算效率和内存消耗方面面临巨大挑战,尤其是在处理高分辨率图像时。为了应对这些挑
- 最新工业基于点云的3D缺陷检测和分类综述
3D视觉工坊
3D视觉从入门到精通3d分类数据挖掘人工智能机器学习
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:点云检测,拉你入群。文末附行业细分群论文题目:ADVANCEMENTSINPOINTCLOUD-BASED3DDEFECTDETECTIONANDCLASSIFICATIONFORINDUSTRIALSYSTEMS:ACOMPREHENSIVESURVEY作者:AnjuRani
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- Windows PC上创建大数据职业技能竞赛实验环境之六--Flume、Kafka和Flink编程
liu9ang
大数据平台hadoopkafkaflinkredis
1Flume参看日志采集工具Flume的安装与使用方法_厦大数据库实验室博客(xmu.edu.cn)。查看Flume安装root@client1:~#flume-ngversionFlume1.7.0Sourcecoderepository:https://git-wip-us.apache.org/repos/asf/flume.gitRevision:511d868555dd4d16e6ce4
- AI算法成长练习第一篇——Task-Adaptive Negative Envision for Few-Shot Open-Set Recognition代码复现
威少的书童
人工智能算法python机器学习深度学习
论文代码复现代码结构ArchitecturesAttnClassifier.pyimporttorch.nnasnnimporttorchimporttorch.nn.functionalasFimportnumpyasnpclassClassifier(nn.Module):def__init__(self,args,feat_dim,param_seam,train_weight_base=F
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- 使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像
神经网络15044
算法python神经网络pythonpytorch生成对抗网络
以下是一个使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像,并添加了显示正确颜色条的功能。importtorchimporttorch.nnasnnimporttorch.optimasoptimimportmatplotlib.pyplotaspltimportnumpyasnpfromtorchvision.utilsimportmake_gridimp
- 2024年令人兴奋的10篇大模型研究和论文
福福很能吃
人工智能自然语言处理语言模型transformer开发语言
后台回复"资料",即可获取整理好的算法面试题(大模型、深度学习、机器学习)2024年对于人工智能来说是一个绝对精彩的年份。每次我觉得我们已经达到了创新的极限时,总有人会突破它,然后又有人将其碎片整合成一个更好的版本。从复杂的推理语言模型到VLMs和视频模型,进步是可以看得到的。VisionMamba:EfficientVisualRepresentationLearningwithBidirect
- 【已解决】ModuleNotFoundError: No module named ‘scipy‘
鳗小鱼
Bugs(程序报错)前端javascript服务器程序员创富计算机视觉人工智能自然语言处理
问题描述今天遇到这样一个问题:ModuleNotFoundError:Nomodulenamed'scipy'问题的具体描述为:Traceback(mostrecentcalllast):File"/media/visionx/monica/newproject/globetrotter/main.py",line20,infromtrainerimportTrainerFile"/media/v
- 6 卷积神经网络实现MNIST手写数字识别
机械专业搞视觉的小白
cnn深度学习神经网络
代码实现了基本的CNN共两层神经网络,包括两层卷积层两层池化层使用的数据集为单通道28*28像素的MNIST数据集,共10个标签训练集可直接在代码里下载代码模块如下:importtorchfromtorchimportnnfromtorch.utils.dataimportDataLoaderfromtorchvisionimportdatasets,transforms#datasets模块封装
- 大模型微调方法之Delta-tuning
空 白II
大语言模型论文解读微调方法介绍微调方法delta-tuning论文解读大语言模型
大模型微调方法之Delta-tuning大模型微调方法自从23年之后可谓是百花齐放,浙大有团队在8月将关于大模型微调方法的综述上传了ArXiv。论文将微调方法总结为等几个类别。本次讨论的1大模型业务分类当前的大模型行业可谓百花齐放,自然语言处理(naturallanguageprocessing,NLP)、计算机视觉(computervision,CV)、音频处理(audioprocessing,
- VisionPro实战之传感器识别
视觉王小
VisionPro实战visionpro机器视觉c#
目录1.案例要求2.实现思路1.先进行图片格式转换,不然可能格式不匹配2.进行模板匹配,仔细观察之后发现可以从左侧凹陷的地方入手,再进行定位3.找出四条线段4.进行距离的测量5.编写脚本或者使用CogCreateGraphicLabelTool工具输出数据3.具体操作1.我们先创建一个CogImageConvertTool工具,进行图片转码操作。2.创建一个模板匹配工具CogPMAlignTool
- c++报错:E0513 不能将 “const char *“ 类型的值分配到 “char *“ 类型的实体
爱听雨声的北方汉
轻轻松松学C++c++开发语言
我们比如编写了下面的一个C++程序,此时在visiostudio2019中报错:#include//iostream是InputOutputStream的缩写,意思是“输入输出流”。#includeusingnamespacestd;classStudent{public://成员变量char*name;intage;floatscore;//成员函数voidsay(){cout<
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- pytorch v1.4.0安装问题
大柠丶
pytorch人工智能python
直接使用conda安装报错:(CenterNet)C:\Users\16323>condainstallpytorch==1.4.0torchvision==0.5.0cudatoolkit=10.1-cpytorch-cconda-forgeChannels:-pytorch-conda-forge-defaultsPlatform:win-64Collectingpackagemetadata
- Vision mamba(mamba_ssm)安装踩坑指南
ggitjcg
深度学习python
在这篇博客中,我将分享我在linux环境安装和使用VisionMamba(mamba_ssm)过程中遇到的一些问题和解决方法。前置检查:PyTorch和Python版本在安装mamba_ssm前,请确保你的PyTorch和Python环境版本正确。以下代码可用来检查环境信息:importtorchprint("PyTorchVersion:{}".format(torch.__version__)
- [解决方案]word文档无法存放过长过大的visio图片
狮子再回头
其他应用visiowordofficeUML
一:问题描述visio-UML画的流程图过长了,复制黏贴到word,一页无法显示全二:解决办法1.选择文档内容,工具栏“开始”——“段落”——“行距”——“单倍行距”,注意不能为固定值;2.选择“插入”---“对象”--“由文件创建”,如下图再选择浏览,打开自己的visio文件,确定。visio文件插入后,可能显示过大或不全,点击“图片工具”。调整下拉框中的高度/宽度,直到显示全visio图片.
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- Lineageos 22.1(Android 15) 开机向导制作
JabamiLight
Lineageosandroidandroid15开机向导Lineageos22.1
一、前言开机向导原理其实就是将特定的category的Activity加入ComponentResolver,如下然后我们开机启动的时候,FallbackHome结束,然后启动Launcher的时候,就会找到对应的开机向导Activity页面。所以我们现定制我们自己的应用。这篇文章只适用于aosp原版的provision,Lineageos有自己的setup_wizard,虽然按照流程可以启动,但
- 树莓派4B arm平台aarch64 pip安装pytorch
纬领网络
pytorcharm深度学习
比如你要安装torch1.7.1的版本,你执行下面这行命令pip3installtorch==1.7.1torchvision==0.8.2torchaudio==0.7.2-fhttps://torch.kmtea.eu/whl/stable-cn.html
- 不搞花里胡哨!CMU最新开源:极简风格的LiDAR全景分割+跟踪!
3D视觉工坊
3D视觉从入门到精通3D视觉
来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf、代码链接添加微信:dddvisiona,备注:三维点云,拉你入群。文末附行业细分群1.笔者个人体会激光雷达全景分割(LPS)一般遵循自下而上的以分割为中心的范式,利用聚类获得对象实例来建立语义分割网络。但是最近CMU&Meta等大佬们重新思考了这种方法,并提出了一个简单而有效的检测中心网络,用于LPS和跟踪。这项工作也
- MDK(Keil μVision 5)的编译过程及文件类型全解
froxy
工具armstm32
MDK(KeilμVision5)的编译过程及文件类型全解一、编译过程MDK的编译过程主要分为预处理、编译、汇编、链接、生成可执行文件、格式转换六个阶段。以下是详细流程:预处理(Preprocessing)工具:armcc(ARMC/C++编译器)输入文件:.c(C源文件)、.h(头文件)输出文件:.i(预处理后的临时文件,默认不保存)作用:展开宏、处理条件编译指令(如#ifdef)、合并头文件到
- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- 【ai】mocap:conda 安装python3.8+ cuda+ pytorch+torchaudio、torchvision
等风来不如迎风去
AI入门与实战人工智能ubuntuconda
MotionCapubuntu18.04不知道为啥会依赖于ffmpeg、xorg渲染?安装pytorch就是会带上cudacudnn啥的pytorch【ai】tx2nx:安装torch、torchvisionforyolov5这里就发现pytorch和torchvision有依赖关系的,还涉及到rapidjson所以python的环境隔离很重要。核心库-cudatoolkit=11.3-pytor
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option