http://www.lydsy.com/JudgeOnline/problem.php?id=2101
这个dp真是神思想orz
设状态f[i, j]表示i~j先手所拿最大值,注意,是先手
所以转移自然而然的变成
f[i, j]=sum[i, j]-min(f[i+1, j], f[i, j-1])
这个转移很好理解吧
但是本题开二维会mle。。
我们考虑以阶段来dp
我们发现,可以按长度为阶段
f[i, i+len]=sum[i, i+len]-min{f[i+1, i+len], f[i, i+len-1)}
而len是递增的,所以我们可以将第二维去掉,即变成滚动数组
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; } inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=5005; int a[N], n, ans, sum[N], f[N]; int main() { read(n); for1(i, 1, n) read(a[i]), sum[i]=sum[i-1]+a[i]; for2(l, 0, n) for1(i, 1, n-l) f[i]=sum[i+l]-sum[i-1]-min(f[i+1], f[i]); print(f[1]); return 0; }
Bessie and Bonnie have found a treasure chest full of marvelous gold coins! Being cows, though, they can't just walk into a store and buy stuff, so instead they decide to have some fun with the coins. The N (1 <= N <= 5,000) coins, each with some value C_i (1 <= C_i <= 5,000) are placed in a straight line. Bessie and Bonnie take turns, and for each cow's turn, she takes exactly one coin off of either the left end or the right end of the line. The game ends when there are no coins left. Bessie and Bonnie are each trying to get as much wealth as possible for themselves. Bessie goes first. Help her figure out the maximum value she can win, assuming that both cows play optimally. Consider a game in which four coins are lined up with these values: 30 25 10 35 Consider this game sequence: Bessie Bonnie New Coin Player Side CoinValue Total Total Line Bessie Right 35 35 0 30 25 10 Bonnie Left 30 35 30 25 10 Bessie Left 25 60 30 10 Bonnie Right 10 60 40 -- This is the best game Bessie can play.
* Line 1: A single integer: N * Lines 2..N+1: Line i+1 contains a single integer: C_i
* Line 1: A single integer, which is the greatest total value Bessie can win if both cows play optimally.
(贝西最好的取法是先取35,然后邦妮会取30,贝西再取25,邦妮最后取10)