n(n<=2e4)个顶点m(m<=6e4)条边,每个顶点有个权值val_i, 然后有Q(Q<=5e5)次操作.
操作分为三类:
D x : 删除第x条边
Q x k : 查询与节点x关联的所有顶点中第k大
C x V : 将节点x的权值更改为V
输出查询的均值 /sum { Query_val } / Query_num
解题思
离线算法
对于删除,可以通过将所有操作读入后,从后往前处理。把删除边转换成插入边。
对于查询第k大顶点,我们可以使用 treap维护的名次树 kth来实现
对于修改操作,我们先将原来的值删除,然后再插入新值。 因为我们使用离线逆向处理,则修改操作也会逆向。
关于名次树,只是对于 treap上增加了一个 size(其子节点的数量和+1)然后来实现求第K大 or 小.
关于Treap:Treap是一颗拥有键值v和优先级r两种权值的树。对于键值而言,这棵树是排序树;对于优先级而言,这棵树是大根堆。
不难证明,如果每个节点的优先级事先给定且不互相等,这棵树的形态也唯一确定了。
关于Treap的模板:
struct Node { Node * ch[2]; int r;//优先级 int v;//值 int s;//节点个数 Node(int _v) { v = _v; ch[0] = ch[1] = NULL; r = rand(); s = 1; } //根据优先级比较节点 bool operator < (const Node & rhs) const { return r < rhs.r; } //比较值确定插入的方向 int cmp(int x) const { if(v == x) return -1; return x < v ? 0 : 1; } void maintain() { s = 1; if(ch[0]!=NULL) s += ch[0]->s; if(ch[1]!=NULL) s += ch[1]->s; } }; //d=0向左转,d=1向右转 void rotate(Node * &o,int d) { Node * k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; o->maintain(); k->maintain(); o = k; } void insert(Node* &o,int x) { if(o == NULL) o = new Node(x); else { int d = (x < o->v ? 0 : 1); insert(o->ch[d],x); if(o->ch[d] > o) rotate(o,d^1); } o->maintain(); } void remove(Node * &o,int x) { int d = o->cmp(x); if(d == -1) { Node * u = o; if(o->ch[0]!=NULL && o->ch[1]!=NULL) { int d2 = (o->ch[0] > o->ch[1] ? 1:0); rotate(o,d2); remove(o->ch[d2],x); } else { if(o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0]; delete u; } } else { remove(o->ch[d],x); } if(o!=NULL) o->maintain(); }
Treap可以用来实现名次树:
在每次树中,每一个节点有一个附加size,表示以它为根的子树的总节点数。
Kth(k):找出第K小元素:
int kth(Node *&o,int k) { if(o == NULL || k<=0 || k>o->s) return 0; int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s); if(k == s + 1) return o->v; else if(k<=s) return kth(o->ch[1],k); else return kth(o->ch[0],k-s-1); }
本题代码:
#include <iostream> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <map> #include <queue> #include <algorithm> using namespace std; struct Node { Node * ch[2]; int r;//优先级 int v;//值 int s;//节点个数 Node(int _v) { v = _v; ch[0] = ch[1] = NULL; r = rand(); s = 1; } //根据优先级比较节点 bool operator < (const Node & rhs) const { return r < rhs.r; } //比较值确定插入的方向 int cmp(int x) const { if(v == x) return -1; return x < v ? 0 : 1; } void maintain() { s = 1; if(ch[0]!=NULL) s += ch[0]->s; if(ch[1]!=NULL) s += ch[1]->s; } }; //d=0向左转,d=1向右转 void rotate(Node * &o,int d) { Node * k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; o->maintain(); k->maintain(); o = k; } void insert(Node* &o,int x) { if(o == NULL) o = new Node(x); else { int d = (x < o->v ? 0 : 1); insert(o->ch[d],x); if(o->ch[d] > o) rotate(o,d^1); } o->maintain(); } void remove(Node * &o,int x) { int d = o->cmp(x); if(d == -1) { Node * u = o; if(o->ch[0]!=NULL && o->ch[1]!=NULL) { int d2 = (o->ch[0] > o->ch[1] ? 1:0); rotate(o,d2); remove(o->ch[d2],x); } else { if(o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0]; delete u; } } else { remove(o->ch[d],x); } if(o!=NULL) o->maintain(); } #define Maxn 20005 #define Maxm 60005 #define Maxc 500005 struct Command { char type; int x,p; Command(){} Command(char _type,int _x,int _p) { type = _type; x = _x; p = _p; } }; Command commands[Maxc]; //边的起始、终止节点编号 int from[Maxm],to[Maxm]; //已经删除的边号 int removed[Maxm]; //每个节点的值 int weight[Maxn]; //父亲节点 int pa[Maxn]; //名次树的根节点 Node * root[Maxn]; //查询的次数 int query_cnt; //查询得到的值的和 long long query_tot; int findset(int x) { if(x == pa[x]) return x; pa[x] = findset(pa[x]); return pa[x]; } void mergeto(Node * &src,Node * &dest) { if(src->ch[0]!=NULL) mergeto(src->ch[0],dest); if(src->ch[1]!=NULL) mergeto(src->ch[1],dest); insert(dest,src->v); delete src; src = NULL; } void removeTree(Node * &x) { if(x->ch[0]!=NULL) removeTree(x->ch[0]); if(x->ch[1]!=NULL) removeTree(x->ch[1]); delete x; x = NULL; } void add_edge(int x) { int u = findset(from[x]); int v = findset(to[x]); if(u!=v) { if(root[u]->s > root[v]->s) {pa[v] = u;mergeto(root[v],root[u]);} else{pa[u] = v;mergeto(root[u],root[v]);} } } int kth(Node *&o,int k) { if(o == NULL || k<=0 || k>o->s) return 0; int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s); if(k == s + 1) return o->v; else if(k<=s) return kth(o->ch[1],k); else return kth(o->ch[0],k-s-1); } void query(int x,int k) { query_cnt++; query_tot += kth(root[findset(x)],k); //printf() } void change_weight(int x,int v) { int u = findset(x); remove(root[u],weight[x]); insert(root[u],v); weight[x] = v; } int main() { #ifndef ONLINE_JUDGE freopen("in.txt","r",stdin); #endif int n,m; int x,p,v; char type; int cas = 0; while(scanf(" %d %d",&n,&m)!=EOF && n!=0) { cas++; for(int i=1;i<=n;i++) scanf(" %d",&weight[i]); for(int i=1;i<=m;i++) scanf(" %d %d",&from[i],&to[i]); memset(removed,0,sizeof(removed)); int c = 0; while(scanf(" %c",&type)!=EOF && type != 'E') { scanf(" %d",&x); if(type == 'C') { scanf(" %d",&v); p = weight[x]; weight[x] = v; } if(type == 'D') removed[x] = 1; if(type == 'Q') scanf(" %d",&p); Command a(type,x,p); commands[c++] = a; } for(int i=1;i<=n;i++) { pa[i] = i; if(root[i]!=NULL) removeTree(root[i]); root[i] = new Node(weight[i]); } for(int i=1;i<=m;i++) if(!removed[i]) add_edge(i); //反向操作 query_cnt = query_tot = 0; for(int i=c-1;i>=0;i--) { if(commands[i].type == 'D') add_edge(commands[i].x); if(commands[i].type == 'Q') query(commands[i].x,commands[i].p); if(commands[i].type == 'C') change_weight(commands[i].x,commands[i].p); } printf("Case %d: %.6lf\n",cas,query_tot/(double)query_cnt); } return 0; }