LA 5031 Graph and Queries

题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3032

n(n<=2e4)个顶点m(m<=6e4)条边,每个顶点有个权值val_i, 然后有Q(Q<=5e5)次操作.

操作分为三类:

D x : 删除第x条边

Q x k : 查询与节点x关联的所有顶点中第k大

C x V : 将节点x的权值更改为V

输出查询的均值  /sum { Query_val } / Query_num

解题思

离线算法

对于删除,可以通过将所有操作读入后,从后往前处理。把删除边转换成插入边。

对于查询第k大顶点,我们可以使用 treap维护的名次树 kth来实现

对于修改操作,我们先将原来的值删除,然后再插入新值。 因为我们使用离线逆向处理,则修改操作也会逆向。

关于名次树,只是对于 treap上增加了一个 size(其子节点的数量和+1)然后来实现求第K大 or 小.


关于Treap:Treap是一颗拥有键值v和优先级r两种权值的树。对于键值而言,这棵树是排序树;对于优先级而言,这棵树是大根堆。

不难证明,如果每个节点的优先级事先给定且不互相等,这棵树的形态也唯一确定了。

关于Treap的模板:

 

struct Node

{

    Node * ch[2];

    int r;//优先级

    int v;//值

    int s;//节点个数

    Node(int _v)

    {

        v = _v;

        ch[0] = ch[1] = NULL;

        r = rand();

        s = 1;

    }



    //根据优先级比较节点

    bool operator < (const Node & rhs) const

    {

        return r < rhs.r;

    }

    //比较值确定插入的方向

    int cmp(int x) const

    {

        if(v == x) return -1;

        return x < v ? 0 : 1;

    }

    void maintain()

    {

        s = 1;

        if(ch[0]!=NULL) s += ch[0]->s;

        if(ch[1]!=NULL) s += ch[1]->s;

    }

};

//d=0向左转,d=1向右转

void rotate(Node * &o,int d)

{

    Node * k = o->ch[d^1];

    o->ch[d^1] = k->ch[d];

    k->ch[d] = o;

    o->maintain();

    k->maintain();

    o = k;

}

void insert(Node* &o,int x)

{

    if(o == NULL) o = new Node(x);

    else

    {

        int d = (x < o->v ? 0 : 1);

        insert(o->ch[d],x);

        if(o->ch[d] > o) rotate(o,d^1);

    }

    o->maintain();

}

void remove(Node * &o,int x)

{

    int d = o->cmp(x);

    if(d == -1)

    {

        Node * u = o;

        if(o->ch[0]!=NULL && o->ch[1]!=NULL)

        {

            int d2 = (o->ch[0] > o->ch[1] ? 1:0);

            rotate(o,d2);

            remove(o->ch[d2],x);

        }

        else

        {

            if(o->ch[0] == NULL) o = o->ch[1];

            else o = o->ch[0];

            delete u;

        }

    }

    else

    {

        remove(o->ch[d],x);

    }

    if(o!=NULL) o->maintain();

}

 


Treap可以用来实现名次树:

在每次树中,每一个节点有一个附加size,表示以它为根的子树的总节点数。

Kth(k):找出第K小元素:

 

int kth(Node *&o,int k)

{

    if(o == NULL || k<=0 || k>o->s) return 0;

    int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s);

    if(k == s + 1) return o->v;

    else if(k<=s) return kth(o->ch[1],k);

    else return kth(o->ch[0],k-s-1);

}


本题代码:

 

 

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <map>

#include <queue>

#include <algorithm>

using namespace std;



struct Node

{

    Node * ch[2];

    int r;//优先级

    int v;//值

    int s;//节点个数

    Node(int _v)

    {

        v = _v;

        ch[0] = ch[1] = NULL;

        r = rand();

        s = 1;

    }



    //根据优先级比较节点

    bool operator < (const Node & rhs) const

    {

        return r < rhs.r;

    }

    //比较值确定插入的方向

    int cmp(int x) const

    {

        if(v == x) return -1;

        return x < v ? 0 : 1;

    }

    void maintain()

    {

        s = 1;

        if(ch[0]!=NULL) s += ch[0]->s;

        if(ch[1]!=NULL) s += ch[1]->s;

    }

};

//d=0向左转,d=1向右转

void rotate(Node * &o,int d)

{

    Node * k = o->ch[d^1];

    o->ch[d^1] = k->ch[d];

    k->ch[d] = o;

    o->maintain();

    k->maintain();

    o = k;

}

void insert(Node* &o,int x)

{

    if(o == NULL) o = new Node(x);

    else

    {

        int d = (x < o->v ? 0 : 1);

        insert(o->ch[d],x);

        if(o->ch[d] > o) rotate(o,d^1);

    }

    o->maintain();

}

void remove(Node * &o,int x)

{

    int d = o->cmp(x);

    if(d == -1)

    {

        Node * u = o;

        if(o->ch[0]!=NULL && o->ch[1]!=NULL)

        {

            int d2 = (o->ch[0] > o->ch[1] ? 1:0);

            rotate(o,d2);

            remove(o->ch[d2],x);

        }

        else

        {

            if(o->ch[0] == NULL) o = o->ch[1];

            else o = o->ch[0];

            delete u;

        }

    }

    else

    {

        remove(o->ch[d],x);

    }

    if(o!=NULL) o->maintain();

}



#define Maxn 20005

#define Maxm 60005

#define Maxc 500005



struct Command

{

    char type;

    int x,p;

    Command(){}

    Command(char _type,int _x,int _p)

    {

        type = _type;

        x = _x;

        p = _p;

    }

};

Command commands[Maxc];



//边的起始、终止节点编号

int from[Maxm],to[Maxm];

//已经删除的边号

int removed[Maxm];

//每个节点的值

int weight[Maxn];

//父亲节点

int pa[Maxn];

//名次树的根节点

Node * root[Maxn];

//查询的次数

int query_cnt;

//查询得到的值的和

long long query_tot;



int findset(int x)

{

    if(x == pa[x]) return x;

    pa[x] = findset(pa[x]);

    return pa[x];

}

void mergeto(Node * &src,Node * &dest)

{

    if(src->ch[0]!=NULL) mergeto(src->ch[0],dest);

    if(src->ch[1]!=NULL) mergeto(src->ch[1],dest);

    insert(dest,src->v);

    delete src;

    src = NULL;

}

void removeTree(Node * &x)

{

    if(x->ch[0]!=NULL) removeTree(x->ch[0]);

    if(x->ch[1]!=NULL) removeTree(x->ch[1]);

    delete x;

    x = NULL;

}

void add_edge(int x)

{

    int u = findset(from[x]);

    int v = findset(to[x]);

    if(u!=v)

    {

        if(root[u]->s > root[v]->s) {pa[v] = u;mergeto(root[v],root[u]);}

        else{pa[u] = v;mergeto(root[u],root[v]);}

    }

}

int kth(Node *&o,int k)

{

    if(o == NULL || k<=0 || k>o->s) return 0;

    int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s);

    if(k == s + 1) return o->v;

    else if(k<=s) return kth(o->ch[1],k);

    else return kth(o->ch[0],k-s-1);

}



void query(int x,int k)

{

    query_cnt++;

    query_tot += kth(root[findset(x)],k);

    //printf()

}

void change_weight(int x,int v)

{

    int u = findset(x);

    remove(root[u],weight[x]);

    insert(root[u],v);

    weight[x] = v;

}



int main()

{

#ifndef ONLINE_JUDGE

    freopen("in.txt","r",stdin);

#endif

    int n,m;

    int x,p,v;

    char type;

    int cas = 0;

    while(scanf(" %d %d",&n,&m)!=EOF && n!=0)

    {

        cas++;

        for(int i=1;i<=n;i++) scanf(" %d",&weight[i]);

        for(int i=1;i<=m;i++) scanf(" %d %d",&from[i],&to[i]);

        memset(removed,0,sizeof(removed));

        int c = 0;

        while(scanf(" %c",&type)!=EOF && type != 'E')

        {

            scanf(" %d",&x);

            if(type == 'C')

            {

                scanf(" %d",&v);

                p = weight[x];

                weight[x] = v;

            }

            if(type == 'D') removed[x] = 1;

            if(type == 'Q') scanf(" %d",&p);

            Command a(type,x,p);

            commands[c++] = a;

        }

        for(int i=1;i<=n;i++)

        {

            pa[i] = i;

            if(root[i]!=NULL) removeTree(root[i]);

            root[i] = new Node(weight[i]);

        }

        for(int i=1;i<=m;i++) if(!removed[i]) add_edge(i);

        //反向操作

        query_cnt = query_tot = 0;

        for(int i=c-1;i>=0;i--)

        {

            if(commands[i].type == 'D') add_edge(commands[i].x);

            if(commands[i].type == 'Q') query(commands[i].x,commands[i].p);

            if(commands[i].type == 'C') change_weight(commands[i].x,commands[i].p);

        }

        printf("Case %d: %.6lf\n",cas,query_tot/(double)query_cnt);

    }

    return 0;

}



 

 

你可能感兴趣的:(Graph)