linux下六大IPC机制

转自http://blog.sina.com.cn/s/blog_587c016a0100nfeq.html

linux下进程间通信IPC的几种主要手段简介:

管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数signal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

管道

管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件的I/O函数都可以用于管道,如close、read、write等等。

  • 只支持单向数据流;
  • 只能用于具有亲缘关系的进程之间;
  • 没有名字;
  • 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);
  • 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等;

管道应用的一个重大限制是它没有名字,因此,只能用于具有亲缘关系的进程间通信,在有名管道(named pipe或FIFO)提出后,该限制得到了克服。FIFO不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之间),因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。
管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。
FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。
管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。
要灵活应用管道及FIFO,理解它们的读写规则是关键。

消息队列

消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的。信号是随进程持续的。

每个消息队列的容量(所能容纳的字节数)都有限制,该值因系统不同而不同。

消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。

信号

信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。

信号量

1、 一次系统调用semop可同时操作的信号灯数目SEMOPM,semop中的参数nsops如果超过了这个数目,将返回E2BIG错误。SEMOPM的大小特定与系统,redhat 8.0为32。
2、 信号灯的最大数目:SEMVMX,当设置信号灯值超过这个限制时,会返回ERANGE错误。在redhat 8.0中该值为32767。
3、 系统范围内信号灯集的最大数目SEMMNI以及系统范围内信号灯的最大数目SEMMNS。超过这两个限制将返回ENOSPC错误。redhat 8.0中该值为32000。
4、 每个信号灯集中的最大信号灯数目SEMMSL,redhat 8.0中为250。 SEMOPM以及SEMVMX是使用semop调用时应该注意的;SEMMNI以及SEMMNS是调用semget时应该注意的。SEMVMX同时也是semctl调用应该注意的。

所以如果是一个share buffer,如果buffer很大的话,信号灯也是不能用的。

共享内存

共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。
采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据[1]:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。

socket

I/O复用提供一种能力,这种能力使得当一个I/O条件满足时,进程能够及时得到这个信息。I/O复用一般应用在进程需要处理多个描述字的场合。它的一个优势在于,进程不是阻塞在真正的I/O调用上,而是阻塞在select()调用上,select()可以同时处理多个描述字,如果它所处理的所有描述字的I/O都没有处于准备好的状态,那么将阻塞;如果有一个或多个描述字I/O处于准备好状态,则select()不阻塞,同时会根据准备好的特定描述字采取相应的I/O操作。

前面主要介绍的是PF_INET通信域,实现网际间的进程间通信。基于Unix通信域(调用socket时指定通信域为PF_LOCAL即可)的套接口可以实现单机之间的进程间通信。采用Unix通信域套接口有几个好处:Unix通信域套接口通常是TCP套接口速度的两倍;另一个好处是,通过Unix通信域套接口可以实现在进程间传递描述字。所有可用描述字描述的对象,如文件、管道、有名管道及套接口等,在我们以某种方式得到该对象的描述字后,都可以通过基于Unix域的套接口来实现对描述字的传递。

原始套接口提供一般套接口所不提供的功能:

  • 原始套接口可以读写一些用于控制的控制协议分组,如ICMPv4等,进而可实现一些特殊功能。
  • 原始套接口可以读写特殊的IPv4数据包。内核一般只处理几个特定协议字段的数据包,那么一些需要不同协议字段的数据包就需要通过原始套接口对其进行读写;
  • 通过原始套接口可以构造自己的Ipv4头部,也是比较有意思的一点。
  • 创建原始套接口需要root权限。

对数据链路层的访问,使得用户可以侦听本地电缆上的所有分组,而不需要使用任何特殊的硬件设备,在linux下读取数据链路层分组需要创建SOCK_PACKET类型的套接口,并需要有root权限。

你可能感兴趣的:(linux)