题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路
思路:这题的模型很的巧妙,转一个http://blog.csdn.net/pi9nc/article/details/12223693
先把有向边随意定向了,然后依据每一个点的入度出度之差,能够确定每一个点须要调整的次数,然后中间就是须要调整的边,容量为1,这样去建图最后推断从源点出发的边是否都满流就可以
代码:
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> using namespace std; const int MAXNODE = 205; const int MAXEDGE = 10005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type cap, flow; Edge() {} Edge(int u, int v, Type cap, Type flow) { this->u = u; this->v = v; this->cap = cap; this->flow = flow; } }; struct Dinic { int n, m, s, t; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool vis[MAXNODE]; Type d[MAXNODE]; int cur[MAXNODE]; vector<int> cut; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type cap) { edges[m] = Edge(u, v, cap, 0); next[m] = first[u]; first[u] = m++; edges[m] = Edge(v, u, 0, 0); next[m] = first[v]; first[v] = m++; } bool bfs() { memset(vis, false, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int u = Q.front(); Q.pop(); for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (!vis[e.v] && e.cap > e.flow) { vis[e.v] = true; d[e.v] = d[u] + 1; Q.push(e.v); } } } return vis[t]; } Type dfs(int u, Type a) { if (u == t || a == 0) return a; Type flow = 0, f; for (int &i = cur[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[i^1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } bool Maxflow(int s, int t) { this->s = s; this->t = t; Type flow = 0; while (bfs()) { for (int i = 0; i < n; i++) cur[i] = first[i]; flow += dfs(s, INF); } for (int i = first[0]; i + 1; i = next[i]) if (edges[i].flow != edges[i].cap) return false; return true; } void MinCut() { cut.clear(); for (int i = 0; i < m; i += 2) { if (vis[edges[i].u] && !vis[edges[i].v]) cut.push_back(i); } } } gao; const int N = 205; const int M = 1005; int t, n, m, in[N], out[N]; int u[M], v[M], w[M]; bool solve() { gao.init(n + 2); for (int i = 1; i <= n; i++) { if ((in[i] + out[i]) % 2) return false; if (in[i] > out[i]) gao.add_Edge(i, n + 1, (in[i] - out[i]) / 2); if (out[i] > in[i]) gao.add_Edge(0, i, (out[i] - in[i]) / 2); } for (int i = 0; i < m; i++) { if (w[i]) continue; gao.add_Edge(u[i], v[i], 1); } return gao.Maxflow(0, n + 1); } int main() { scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); memset(in, 0, sizeof(in)); memset(out, 0, sizeof(out)); for (int i = 0; i < m; i++) { scanf("%d%d%d", &u[i], &v[i], &w[i]); in[v[i]]++; out[u[i]]++; } printf("%s\n", solve() ? "possible" : "impossible"); } return 0; }