Kaggle—Digit Recognizer竞赛

Digit Recognizer


手写体数字识别  MNIST数据集

本赛 train 42000样例 test 28000样例,原始MNIST是 train 60000 test 10000

我分别用 Logistic Regression/ 784-200-200-10的Sparse AutoEncoder/Convolution AutoEncoder刷了下

Kaggle—Digit Recognizer竞赛_第1张图片


Kaggle—Digit Recognizer竞赛_第2张图片



===============方法一、 One-Vs-All 的Logistic Regression===================

 

%% 
ccc
load digitData

%%
input_layer_size  = 28*28;  
num_ys = 10;         
                     
X = train_x;
[~,y] = max(train_y, [], 2);

lambda = 0.1;
lambda = 100;
[all_theta] = oneVsAll(X, y, num_ys, lambda);

%% ================ Part: Predict for One-Vs-All ================
%  After ...
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

%% ============== 计算test准确度(test_y 是基于KNN的 只作为参考)
[~,test_y] = max(test_y, [], 2);

pred = predictOneVsAll(all_theta, test_x);
fprintf('\nTest Set Accuracy: %f\n', mean(double(pred == test_y)) * 100);

%% write csv file
pred(pred==10) = 0;
M = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',M)

 


Kaggle—Digit Recognizer竞赛_第3张图片

===============方法二、 784-200-200-10的Sparse AutoEncoder ===================

 

%% STEP 0: Here we provide the relevant parameters values that will
tic

inputDim = 28;
inputSize = 28 * 28;
numClasses = 10;
hiddenSizeL1 = 200;    % Layer 1 Hidden Size
hiddenSizeL2 = 200;    % Layer 2 Hidden Size
sparsityParam = 0.1;   % desired average activation of the hidden units.
                       % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
		               %  in the lecture notes). 
lambda = 3e-3;         % weight decay parameter       
beta = 3;              % weight of sparsity penalty term       
maxIter = 100;    


%% STEP 1: Load data
load digitData
trainData = train_x';
[~, trainLabels] = max(train_y, [], 2);
%%% 增加数据 

%%% ZCA白化 像素值范围变化 []
% trainData = ZCAWhite(trainData);

%% STEP 2: Train the first sparse autoencoder
sae1Theta = initializeParameters(hiddenSizeL1, inputSize);

options.Method = 'lbfgs';
options.maxIter = 200;	  % Maximum number of iterations of L-BFGS to run 
options.display = 'on';
[sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                   inputSize, hiddenSizeL1, ...
                                   lambda, sparsityParam, ...
                                   beta, trainData), ...
                              sae1Theta, options);

% -------------------------------------------------------------------------
W1 = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), hiddenSizeL1, inputSize);
display_network(W1', 12); 


%% STEP 2: Train the second sparse autoencoder
[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
                                        inputSize, trainData);

%  Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);

options.Method = 'lbfgs';
options.maxIter = 100;	  % Maximum number of iterations of L-BFGS to run 
options.display = 'on';

[sae2OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                   size(sae1Features,1), hiddenSizeL2, ...
                                   lambda, sparsityParam, ...
                                   beta, sae1Features), ...
                              sae2Theta, options);

%% STEP 3: Train the softmax classifier

[sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
                                        hiddenSizeL1, sae1Features);

%  Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);


lambda = 1e-4;
options.maxIter = 200;
softmaxModel = softmaxTrain(hiddenSizeL2, numClasses, lambda, ...
                            sae2Features, trainLabels, options);
% -------------------------------------------------------------------------
 saeSoftmaxOptTheta = softmaxModel.optTheta(:);


%% STEP 5: Finetune softmax model

% Implement the stackedAECost to give the combined cost of the whole model
% then run this cell.

% Initialize the stack using the parameters learned
stack = cell(2,1);
stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ...
                     hiddenSizeL1, inputSize);
stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ...
                     hiddenSizeL2, hiddenSizeL1);
stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);

% Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];

options.Method = 'lbfgs'; 
options.maxIter = 400;	  % Maximum number of iterations of L-BFGS to run 
options.display = 'on';

[stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
                                   hiddenSizeL2 , hiddenSizeL2, ...
                                   numClasses, netconfig, ...
                                   lambda, trainData, trainLabels), ...
                              stackedAETheta, options);

% -------------------------------------------------------------------------

%% STEP 6: Test 
%  Instructions: You will need to complete the code in stackedAEPredict.m
%                before running this part of the code
%

testData = test_x';
[~, testLabels] = max(test_y, [], 2);

[pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
                          numClasses, netconfig, testData);

acc = mean(testLabels(:) == pred(:));
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * 100);

[pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
                          numClasses, netconfig, testData);

acc = mean(testLabels(:) == pred(:));
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * 100);
toc

pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)


 


test准确率 基于Knn的pred-label 



===============方法三、 784-200-200-10的Sparse AutoEncoder ===================

使用DeepLearnToolbox

 

%% 
clear
close all
clc

%% load data label
load digitData

%%% pre-processing 
%% ex2 train a X-X hidden unit SDAE and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
nDim = [784 200 200];
sae = saesetup(nDim);
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate              = 1;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;

sae.ae{2}.activation_function       = 'sigm';
sae.ae{2}.learningRate              = 1;
sae.ae{2}.inputZeroMaskedFraction   = 0.5;

% sae.ae{3}.activation_function       = 'sigm';
% sae.ae{3}.learningRate              = 0.8;
% sae.ae{3}.inputZeroMaskedFraction   = 0.5;

opts.numepochs =   30;
opts.batchsize = 100;
% opts.sparsityTarget = 0.05;%$LiFeiteng
% opts.nonSparsityPenalty = 1;
opts.dropoutFraction = 0.5;

sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')

%% Use the SDAE to initialize a FFNN
nn = nnsetup([nDim 10]);
nn.activation_function              = 'sigm';%'sigm';
nn.learningRate                     = 1;

%add pretrained weights
nn.W{1} = sae.ae{1}.W{1};
nn.W{2} = sae.ae{2}.W{1};
%nn.W{3} = sae.ae{3}.W{1};

% Train the FFNN
fprintf('\n')
opts.numepochs =   40;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);

%% test
[er, bad, pred] = nntest(nn, test_x, test_y);

pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)

 


start of the art!

==================================================================

排名200多好伤感!!!

Kaggle—Digit Recognizer竞赛_第4张图片

Leaderboard上好多100%的,其实我也可以做到——作弊——把错误的部分 逐一用肉眼扫下,更改test_label就可,不过这就没意思了。

Kaggle—Digit Recognizer竞赛_第5张图片

Y. LeCun 维护的

THE MNIST DATABASE

最好成绩:

 


==============================

可以提高准确率的方法:

1.增加train的个数,对增加原始图像 平移 旋转等构造新图像;

2.对图像做预处理等;直接用PCA or ZCA白化 会改变像素值范围;

3.卷积-池化等加入Deep Networks中去;

4.New Model。。。















 

你可能感兴趣的:(git)