呃~
一开始写了邻接矩阵的~结果mle了~
后来改成了邻接表的~结果tle了~
然后就用快排做了~~
但是程大学长说用堆排序~wulala~看着很麻烦吖~暂时放着~~
输入T<T组样例..>
输入n个點+m条边..
输入n个點的价值..
输入m条边<u 起点 v终点 w (u, v)的权值..>
其实最重要就是求单源最短路径了..
用邻接表可以解决点太多的问题..
用堆排序或优先队列可以解决 tle的问题..
AC代码<邻接表_优先排列>..
1 #include <stdio.h> 2 #include <cstring> 3 #include <queue> 4 using namespace std; 5 #define INF 0x1f1f1f1f 6 7 struct ArcNode 8 { 9 int adjvex; 10 long long w; 11 ArcNode *nextarc; 12 }node[50010]; 13 14 struct Node 15 { 16 int num; 17 long long w; 18 bool operator < (Node n) const 19 { 20 return w > n.w; 21 } 22 }tem, tem1; 23 24 long long dist[50010]; 25 int n, e; 26 bool fflag; 27 ArcNode edge[50010 * 2]; 28 int nE; 29 30 void Dijkstra(int v0) 31 { 32 int i, j; 33 ArcNode *p = &node[v0]; 34 ArcNode *pi = NULL; 35 priority_queue<Node> Q; 36 37 while(p != NULL) 38 { 39 dist[p->adjvex] = p->w; 40 p = p->nextarc; 41 } 42 43 dist[v0] = 0; 44 tem.num = v0; 45 tem.w = 0; 46 47 Q.push(tem); 48 while(!Q.empty()) 49 { 50 tem = Q.top(); 51 Q.pop(); 52 53 for(pi = node[tem.num].nextarc; pi != NULL; pi = pi->nextarc) 54 { 55 tem1.w = tem.w + pi->w; 56 tem1.num = pi->adjvex; 57 if(tem1.w <= dist[tem1.num]) 58 { 59 dist[tem1.num] = tem1.w; 60 Q.push(tem1); 61 } 62 } 63 } 64 65 }//Dijkstra 66 67 68 int main() 69 { 70 int T; 71 int i, j, k; 72 int a, b; 73 long long w; 74 ArcNode *p; 75 long long sum; 76 long long W[50010]; 77 while(scanf("%d", &T) != EOF) 78 while(T--) 79 { 80 sum = 0; 81 fflag = true; 82 scanf("%d%d", &n, &e); 83 84 for(i = 1; i <= n; ++i) 85 { 86 scanf("%lld", &W[i]); 87 node[i].nextarc = NULL; 88 }// for i n cin W 89 90 nE = 0; 91 for(i = 0; i < e; ++i) 92 { 93 scanf("%d %d %lld", &a, &b, &w); 94 95 p = edge + nE++; 96 p->adjvex = b; 97 p->w = w; 98 p->nextarc = node[a].nextarc; 99 node[a].nextarc = p; 100 101 p = edge + nE++; 102 p->adjvex = a; 103 p->w = w; 104 p->nextarc = node[b].nextarc; 105 node[b].nextarc = p; 106 107 }//for i v cin a b w 108 109 memset(dist, INF, sizeof(dist)); 110 111 Dijkstra(1); 112 113 for(i = 1; i <= n; ++i) 114 { 115 if(dist[i] >= INF) 116 { 117 fflag = false; 118 break; 119 } 120 }//for i n 121 122 123 if(!fflag) 124 { 125 printf("No Answer\n"); 126 continue; 127 }//if !flag 128 else 129 { 130 for(i = 1; i <= n; ++i) 131 sum += dist[i]*W[i]; 132 printf("%lld\n", sum); 133 }// flag 134 }//while t-- 135 return 0; 136 }
Mle代码<邻接矩阵>
1 #include<stdio.h> 2 3 #include<cstring> 4 5 #defineINF 0x7fffffff 6 7 usingnamespace std; 8 9 10 11 intn, e; 12 13 intEdge[50010][50010]; 14 15 boolS[50010]; 16 17 intdist[50010]; 18 19 20 21 voidDijkstra(int v0) 22 23 { 24 25 int i, j, k; 26 27 for(i = 0; i < n; ++i) 28 29 { 30 31 dist[i] = Edge[v0][i]; 32 33 S[i] = false; 34 35 }// for i n 36 37 S[v0] = true; 38 39 dist[v0] = 0; 40 41 for(i = 0; i < n-1; ++i) 42 43 { 44 45 int min = INF; 46 47 int u = v0; 48 49 for(j = 0; j < n; ++j) 50 51 { 52 53 if(!S[j] && dist[j] <min) 54 55 { 56 57 u = j; 58 59 min = dist[j]; 60 61 }// if !S & dist < min 62 63 }// for j n 64 65 S[u] = true; 66 67 68 69 for(k = 0; k < n; ++k) 70 71 { 72 73 if(!S[k] && Edge[u][k] <INF && dist[u]+Edge[u][k] < dist[k]) 74 75 { 76 77 dist[k] = dist[u]+Edge[u][k]; 78 79 }// if !S && Edge(u, k) *** 80 81 }// for k n 82 83 }//for i n-1 84 85 86 87 }//Dijkstra v0 88 89 90 91 intmain() 92 93 { 94 95 int T; 96 97 int i, j, k; 98 99 int W[50010]; 100 101 int a, b, w; 102 103 long long sum; 104 105 bool flag; 106 107 108 109 while(scanf("%d", &T) != EOF) 110 111 while(T--) 112 113 { 114 115 memset(Edge, 0, sizeof(Edge)); 116 117 flag = true; 118 119 sum = 0; 120 121 scanf("%d%d", &n,&e); 122 123 for(i = 0; i < n; ++i) 124 125 scanf("%d", &W[i]); 126 127 128 129 for(i = 0; i < n; ++i) 130 131 { 132 133 for(j = 0; j < n; ++j) 134 135 { 136 137 if(i == j) Edge[i][j] = 0; 138 139 else if(Edge[i][j] == 0)Edge[i][j] = INF; 140 141 }//for j n 142 143 }//for i n 144 145 146 147 for(i = 0; i < e; ++i) 148 149 { 150 151 scanf("%d%d%d", &a,&b, &w); 152 153 Edge[a-1][b-1] = w; 154 155 Edge[b-1][a-1] = w; 156 157 }// cin u v w 158 159 /* 160 161 for(i= 0; i < n; ++i) 162 163 { 164 165 for(j = 0; j < n; ++j) 166 167 if(Edge[i][j] == INF) printf("* "); 168 169 else printf("%d ", Edge[i][j]); 170 171 puts(""); 172 173 } 174 175 /// 176 177 Dijkstra(0); 178 179 180 181 for(i = 1; i < n; ++i) 182 183 if(dist[i] == INF) 184 185 { 186 187 flag = false; 188 189 break; 190 191 }//for no answer 192 193 if(!flag) 194 195 { 196 197 printf("No Answer\n"); 198 199 continue; 200 201 }//cout no answer 202 203 else 204 205 { 206 207 for(i = 1; i < n; ++i) 208 209 { 210 211 sum += dist[i]*W[i]; 212 213 }// for i n-1 214 215 216 217 printf("%lld\n", sum); 218 219 }// cout sum 220 221 222 223 }// while t-- 224 225 226 227 return 0; 228 229 } 230 231
Tle代码<邻接表..>
1 #include<stdio.h> 2 3 #include<cstring> 4 5 #include<queue> 6 7 #defineINF 0x1f1f1f1f 8 9 10 11 structArcNode 12 13 { 14 15 ArcNode(){nextarc = NULL;} 16 17 int adjvex; 18 19 long long w; 20 21 ArcNode *nextarc; 22 23 }node[50010]; 24 25 26 27 longlong dist[50010]; 28 29 boolflag[50010]; 30 31 intn, e; 32 33 boolfflag; 34 35 36 37 voidDijkstra(int v0) 38 39 { 40 41 int i, j; 42 43 ArcNode *p = &node[v0]; 44 45 ArcNode *pi = NULL; 46 47 48 49 memset(flag, false, sizeof(flag)); 50 51 52 53 while(p != NULL) 54 55 { 56 57 dist[p->adjvex] = p->w; 58 59 p = p->nextarc; 60 61 } 62 63 flag[v0] = true; 64 65 dist[v0] = 0; 66 67 for(i = 0; i < n-1; ++i) 68 69 { 70 71 long long min = INF, u = v0; 72 73 for(j = 1; j <= n; ++j) 74 75 { 76 77 if(!flag[j] && dist[j] <min) 78 79 { 80 81 u = j; 82 83 min = dist[j]; 84 85 }//if !flag && dist <min 86 87 }// for j n 88 89 90 91 flag[u] = true; 92 93 for(pi = &node[u]; pi; pi =pi->nextarc) 94 95 { 96 97 if(!flag[pi->adjvex] &&dist[u]+pi->w < dist[pi->adjvex]) 98 99 { 100 101 dist[pi->adjvex] = dist[u] +pi->w; 102 103 } 104 105 } 106 107 }// for i n-1 108 109 }//Dijkstra 110 111 112 113 114 115 intmain() 116 117 { 118 119 int T; 120 121 int i, j, k; 122 123 int a, b; 124 125 long long w; 126 127 ArcNode *p; 128 129 long long sum; 130 131 long long W[50010]; 132 133 while(scanf("%d", &T) != EOF) 134 135 while(T--) 136 137 { 138 139 sum = 0; 140 141 fflag = true; 142 143 scanf("%d%d", &n,&e); 144 145 146 147 for(i = 1; i <= n; ++i) 148 149 { 150 151 scanf("%lld", &W[i]); 152 153 node[i].nextarc = NULL; 154 155 }// for i n cin W 156 157 for(i = 0; i < e; ++i) 158 159 { 160 161 scanf("%d %d %lld",&a, &b, &w); 162 163 164 165 p = new ArcNode; 166 167 p->adjvex = b; 168 169 p->w = w; 170 171 p->nextarc = node[a].nextarc; 172 173 node[a].nextarc = p; 174 175 176 177 p = new ArcNode; 178 179 p->adjvex = a; 180 181 p->w = w; 182 183 p->nextarc = node[b].nextarc; 184 185 node[b].nextarc = p; 186 187 188 189 190 191 }//for i v cin a b w 192 193 194 195 memset(dist, INF, sizeof(dist)); 196 197 198 199 Dijkstra(1); 200 201 202 203 for(i = 1; i <= n; ++i) 204 205 { 206 207 if(dist[i] >= INF) 208 209 { 210 211 fflag = false; 212 213 break; 214 215 } 216 217 }//for i n 218 219 220 221 222 223 if(!fflag) 224 225 { 226 227 printf("No Answer\n"); 228 229 continue; 230 231 }//if !flag 232 233 else 234 235 { 236 237 for(i = 1; i <= n; ++i) 238 239 sum += dist[i]*W[i]; 240 241 printf("%lld\n", sum); 242 243 }// flag 244 245 }//while t-- 246 247 return 0; 248 249 } 250 251
黄李龙学长版~<堆排序>
1 #include <cstdio> 2 3 #include <cstring> 4 5 #include <climits> 6 7 #include <iostream> 8 9 #include <algorithm> 10 11 using namespace std; 12 13 typedef long long llong; 14 15 const int MAXN = 50000 + 10; 16 17 18 19 struct Edge { 20 21 intto, len; 22 23 Edge*next; 24 25 }; 26 27 int nE; 28 29 Edge *head[MAXN]; 30 31 Edge E[MAXN * 2]; 32 33 34 35 void addEdge(int u, int v, int len) 36 37 { 38 39 Edge*e = E + nE++; 40 41 e->to= v; 42 43 e->len= len; 44 45 e->next= head[u]; 46 47 head[u]= e; 48 49 } 50 51 52 53 bool vis[MAXN]; 54 55 struct Node { 56 57 intv; 58 59 llonglen; 60 61 booloperator < (const Node &B) const { 62 63 returnlen > B.len; 64 65 } 66 67 } vHeap[MAXN]; 68 69 70 71 void dijkstra(int n, int s, Edge *head[],llong len[]) 72 73 { 74 75 memset(vis,0, sizeof(vis[0]) * (n + 1)); 76 77 memset(len,-1, sizeof(len[0]) * (n + 1)); 78 79 len[s]= 0; 80 81 intcnt = 1; 82 83 vHeap[0].v= s; 84 85 vHeap[0].len= 0; 86 87 for(int i = 0; i < n; ++i) { 88 89 intu = -1; 90 91 llongminLen = -1; 92 93 while(cnt > 0) { 94 95 u= vHeap[0].v; 96 97 minLen= vHeap[0].len; 98 99 pop_heap(vHeap,vHeap + cnt); 100 101 --cnt; 102 103 if(!vis[u]) { 104 105 break; 106 107 } 108 109 u= -1; 110 111 } 112 113 if(u == -1) break; 114 115 vis[u]= true; 116 117 for(Edge *e = head[u]; e; e = e->next) { 118 119 if(!vis[e->to] && (len[e->to] == -1 || len[e->to] > minLen +e->len)) { 120 121 len[e->to]= minLen + e->len; 122 123 vHeap[cnt].v= e->to; 124 125 vHeap[cnt].len= len[e->to]; 126 127 ++cnt; 128 129 push_heap(vHeap,vHeap + cnt); 130 131 } 132 133 } 134 135 } 136 137 } 138 139 140 141 int weight[MAXN]; 142 143 llong len[MAXN]; 144 145 146 147 int main() 148 149 { 150 151 intnTest; 152 153 intn, e; 154 155 scanf("%d",&nTest); 156 157 while(nTest--) { 158 159 scanf("%d%d", &n, &e); 160 161 for(int i = 1; i <= n; ++i) { 162 163 scanf("%d",&weight[i]); 164 165 } 166 167 nE= 0; 168 169 memset(head,0, sizeof(head)); 170 171 for(int i = 0; i < e; ++i) { 172 173 inta, b, w; 174 175 scanf("%d%d %d", &a, &b, &w); 176 177 addEdge(a,b, w); 178 179 addEdge(b,a, w); 180 181 } 182 183 184 185 dijkstra(n,1, head, len); 186 187 llongans = 0; 188 189 for(int i = 1; i <= n; ++i) { 190 191 if(len[i] < 0) { 192 193 ans= -1; 194 195 break; 196 197 } 198 199 ans+= weight[i] * len[i]; 200 201 } 202 203 if(ans >= 0) { 204 205 printf("%lld\n",ans); 206 207 }else { 208 209 puts("NoAnswer"); 210 211 } 212 213 } 214 215 return0; 216 217 }