poj2187 Beauty Contest 凸包求点集的直径

http://poj.org/problem?id=2187
题意:给定平面的一些点,求最远两点距离的平方值。
解题:用Graham法求凸包,注意凸包边上如果存在点要保留,因为存在所有的点组成的是一条直线的情况。再用枚举法求凸包的直径,当然凸包直径也可用旋转卡壳求解,可惜这种方法我还不是很清楚。

#include<stdio.h>
#include<stdlib.h>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 50005
struct point{
    double x,y;
}list[maxn],s[maxn];
int n,top;
double m(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
bool cmp(point p1,point p2){
    double t;
    t=m(p1,p2,list[0]);
    if(t>0||(t==0&&pow(p1.x-list[0].x,2)+pow(p1.y-list[0].y,2)<pow(p2.x-list[0].x,2)+pow(p2.y-list[0].y,2)))
        return 1;
    else return 0;
}
void  Graham()
{
    int i;
    sort(list+1,list+n,cmp);
    for(i=0;i<3;i++)s[i]=list[i];
    top=2;
    for(i=3;i<n;i++){
        while(top>0&&(m(list[i],s[top],s[top-1])>=0))top--;
        s[++top]=list[i];
    }
}   
int main()
{
    int i,j,ans,dis;
    double area;
    point t;
    while(scanf("%d",&n)!=EOF)
    {
        for(i=0;i<n;i++){
            scanf("%lf%lf",&list[i].x,&list[i].y);
            if((list[i].y<list[0].y)||(list[i].y==list[0].y&&list[i].x<list[0].x)){
                t=list[0];
                list[0]=list[i];
                list[i]=t;
            }
        }
        Graham();
        ans=-1;
                for(i=0;i<top;i++)
                for(j=i+1;j<=top;j++)
                {
                    dis=(s[i].x-s[j].x)*(s[i].x-s[j].x)+(s[i].y-s[j].y)*(s[i].y-s[j].y);
                    if(dis>ans)
                    ans=dis;
                }
        printf("%d\n",ans);
    }
    return 0;
}

你可能感兴趣的:(test)