memcached源码分析之线程池机制(一)

已经个把月没有写长篇博文了,最近抽了点时间,将memcached源码分析系列文章的线程机制篇给整出来,在分析源码的过程中参考了网上的一些资源。

该文主要集中于两个问题:(1)memcached线程池是如何创建的,(2)线程池中的线程又是如何进行调度的。一切从源码中找答案。

memcached的线程池模型采用较典型的Master-Worker模型:

(1)主线程负责监听客户端的建立连接请求,以及accept 连接,将连接好的套接字放入连接队列;

(2)调度workers空闲线程来负责处理已经建立好的连接的读写等事件。

1 关键数据抽象

(1)memcached单个线程结构的封装

 1 //memcached线程结构的封装结构

 2 typedef struct {

 3     pthread_t thread_id;        /* unique ID of this thread */

 4     struct event_base *base;    /* libevent handle this thread uses */

 5     struct event notify_event;  /* listen event for notify pipe */

 6     int notify_receive_fd;      /* receiving end of notify pipe */

 7     int notify_send_fd;         /* sending end of notify pipe */

 8     struct thread_stats stats;  /* Stats generated by this thread */

 9     struct conn_queue *new_conn_queue; /* queue of new connections to handle */

10     cache_t *suffix_cache;      /* suffix cache */

11 } LIBEVENT_THREAD;

这是memcached里的线程结构的封装,可以看到每个线程都包含一个CQ队列,一条通知管道pipe ,% m) z( Q4 O1 P+ d6 一个libevent的实例event_base等。

(2)线程连接队列

1 /* A connection queue. */

2 typedef struct conn_queue CQ;

3 struct conn_queue {

4     CQ_ITEM *head;

5     CQ_ITEM *tail;

6     pthread_mutex_t lock;

7     pthread_cond_t  cond;

8 };

每个线程结构体中都指向一个CQ链表,CQ链表管理CQ_ITEM的单向链表。

(3)连接项结构体

 1 /* An item in the connection queue. */

 2 typedef struct conn_queue_item CQ_ITEM;

 3 struct conn_queue_item {

 4     int               sfd;

 5     enum conn_states  init_state;

 6     int               event_flags;

 7     int               read_buffer_size;

 8     enum network_transport     transport;

 9     CQ_ITEM          *next;

10 };

CQ_ITEM实际上是主线程accept后返回的已建立连接的fd的封装,由主线程创建初始化并放入连接链表CQ中,共workers线程使用。

(4)网络连接的封装结构体

1 /**

2  * The structure representing a connection into memcached.

3  */

4  //memcached表示一个conn的抽象结构

5 typedef struct conn conn;

6 struct conn {

7 ..................   

8 };

由于这个结构太大,就略去中间的成员不展示了,与我们线程池相关的有一个成员则非常关键,那就是state,它是memcached中状态机驱动的关键(由drive_machine函数实现)。

2 线程池的初始化:

main()中线程池初始化函数入口为:

/* start up worker threads if MT mode */

thread_init(settings.num_threads, main_base);

函数的定义在thread.c实现,源码如下所示:

 1 /*

 2  * Initializes the thread subsystem, creating various worker threads.

 3  *

 4  * nthreads  Number of worker event handler threads to spawn

 5  * main_base Event base for main thread

 6  */

 7 void thread_init(int nthreads, struct event_base *main_base) {

 8     int         i;

 9 

10     pthread_mutex_init(&cache_lock, NULL);

11     pthread_mutex_init(&stats_lock, NULL);

12 

13     pthread_mutex_init(&init_lock, NULL);

14     pthread_cond_init(&init_cond, NULL);

15 

16     pthread_mutex_init(&cqi_freelist_lock, NULL);

17     cqi_freelist = NULL;

18 

19     //分配线程池结构数组

20     threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));

21     if (! threads) {

22         perror("Can't allocate thread descriptors");

23         exit(1);

24     }

25 

26     dispatcher_thread.base = main_base;

27     dispatcher_thread.thread_id = pthread_self();

28 

29     //为线程池每个线程创建读写管道

30     for (i = 0; i < nthreads; i++) {

31         int fds[2];

32         if (pipe(fds)) {

33             perror("Can't create notify pipe");

34             exit(1);

35         }

36 

37         threads[i].notify_receive_fd = fds[0];

38         threads[i].notify_send_fd = fds[1];

39 

40         //填充线程结构体信息

41         setup_thread(&threads[i]);

42     }

43 

44     /* Create threads after we've done all the libevent setup. */

45     for (i = 0; i < nthreads; i++) {

46         //为线程池创建数目为nthreads的线程,worker_libevent为线程的回调函数,

47         create_worker(worker_libevent, &threads[i]);

48     }

49 

50     /* Wait for all the threads to set themselves up before returning. */

51     pthread_mutex_lock(&init_lock);

52     while (init_count < nthreads) {

53         pthread_cond_wait(&init_cond, &init_lock);

54     }

55     pthread_mutex_unlock(&init_lock);

56 }

线程池初始化函数由主线程进行调用,该函数先初始化各互斥锁,然后使用calloc分配nthreads*sizeof(LIBEVENT_THREAD)个字节的内存块来管理线程池,返回一个全局static变量 threads(类型为LIBEVENT_THREAD *);然后为每个线程创建一个匿名管道(该pipe将在线程的调度中发挥作用),接下来的setup_thread函数为线程设置事件监听,绑定CQ链表等初始化信息,源码如下所示:

 1 /*

 2  * Set up a thread's information.

 3  */

 4 static void setup_thread(LIBEVENT_THREAD *me) {

 5     me->base = event_init();

 6     if (! me->base) {

 7         fprintf(stderr, "Can't allocate event base\n");

 8         exit(1);

 9     }

10 

11     /* Listen for notifications from other threads */

12     //为管道设置读事件监听,thread_libevent_process为回调函数

13     event_set(&me->notify_event, me->notify_receive_fd,

14               EV_READ | EV_PERSIST, thread_libevent_process, me);

15     event_base_set(me->base, &me->notify_event);

16 

17     if (event_add(&me->notify_event, 0) == -1) {

18         fprintf(stderr, "Can't monitor libevent notify pipe\n");

19         exit(1);

20     }

21 

22     //为新线程创建连接CQ链表

23     me->new_conn_queue = malloc(sizeof(struct conn_queue));

24     if (me->new_conn_queue == NULL) {

25         perror("Failed to allocate memory for connection queue");

26         exit(EXIT_FAILURE);

27     }

28     //初始化线程控制器内的CQ链表

29     cq_init(me->new_conn_queue);

30 

31     if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) {

32         perror("Failed to initialize mutex");

33         exit(EXIT_FAILURE);

34     }

35     //创建cache

36     me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),

37                                     NULL, NULL);

38     if (me->suffix_cache == NULL) {

39         fprintf(stderr, "Failed to create suffix cache\n");

40         exit(EXIT_FAILURE);

41     }

42 }

memcached使用libevent实现事件循环,关于libevent,不熟悉的读者可以查看相关资料,这里不做介绍,源码中的这句代码:

 event_set(&me->notify_event, me->notify_receive_fd,EV_READ | EV_PERSIST, thread_libevent_process, me);

在me->notify_receive_fd(即匿名管道的读端)设置可读事件,回调函数 为thread_libevent_process,函数定义如下:

 1 static void thread_libevent_process(int fd, short which, void *arg) {

 2     LIBEVENT_THREAD *me = arg;

 3     CQ_ITEM *item;

 4     char buf[1];

 5 

 6     //响应pipe可读事件,读取主线程向管道内写的1字节数据(见dispatch_conn_new()函数)

 7     if (read(fd, buf, 1) != 1)

 8         if (settings.verbose > 0)

 9             fprintf(stderr, "Can't read from libevent pipe\n");

10 

11     //从链接队列中取出一个conn

12     item = cq_pop(me->new_conn_queue);

13 

14     if (NULL != item) {

15         //使用conn创建新的任务

16         conn *c = conn_new(item->sfd, item->init_state, item->event_flags,

17                            item->read_buffer_size, item->transport, me->base);

18         if (c == NULL) {

19             if (IS_UDP(item->transport)) {

20                 fprintf(stderr, "Can't listen for events on UDP socket\n");

21                 exit(1);

22             } else {

23                 if (settings.verbose > 0) {

24                     fprintf(stderr, "Can't listen for events on fd %d\n",

25                         item->sfd);

26                 }

27                 close(item->sfd);

28             }

29         } else {

30             c->thread = me;

31         }

32         cqi_free(item);

33     }

34 }

      使用setup_thread设置线程结构体的初始化信息之后,现在我们回到thread_init函数,thread_init中接着循环调用(循环调用nthreads次)create_worker(worker_libevent, &threads[i]); 创建真正运行的线程,create_worker是对pthread_create()简单的封装,参数worker_libevent作为每个线程的运行体,&threads[i]为传入参数。

worker_libevent为线程体,源码如下:

 1 /*

 2  * Worker thread: main event loop

 3  */

 4 static void *worker_libevent(void *arg) {

 5     LIBEVENT_THREAD *me = arg;

 6 

 7     /* Any per-thread setup can happen here; thread_init() will block until

 8      * all threads have finished initializing.

 9      */

10     pthread_mutex_lock(&init_lock);

11     init_count++;     //每创建新线程,将全局init_count加1

12     pthread_cond_signal(&init_cond);  // 发送init_cond信号

13     pthread_mutex_unlock(&init_lock);

14 

15     //新创建线程阻塞于此,等待事件

16     event_base_loop(me->base, 0); //Libevent的事件主循环

17     return NULL;

18 }

worker_libevent中给init_count加1的目的在thread_init函数的这段代码可以看出来,

1  /* Wait for all the threads to set themselves up before returning. */

2     pthread_mutex_lock(&init_lock);

3     while (init_count < nthreads) {

4         pthread_cond_wait(&init_cond, &init_lock);

5     }

6     pthread_mutex_unlock(&init_lock);

即主线程阻塞如此,等待worker_libevent发出的init_cond信号,唤醒后检查init_count < nthreads是否为假(即创建的线程数目是否达到要求),否则继续等待。

至此,线程池创建的代码已分析完毕,由于篇幅较长,将分析线程池中线程的调度流程另立一篇。

 

 

 

你可能感兴趣的:(memcached)