OpenRisc-26-openrisc中断实验


 

 引言

 中断(异常)系统,可以说是计算机体系结构重要的组成部分,也是最复杂的部分。
 现在的很多外设,都提供中断处理机制,来减少CPU的一直占用时间。
 本小节就通过一个简单的例子,来说明openrisc的中断机制的使用方法。
 

 1,功能简介

 本小节实现一个wishbone slave模块(mycore),此模块接收其对应的linux driver的指令,产生中断信号。
 linux driver注册中断处理程序,记录中断发生的次数。
 本实验中,在模块加载时(insmod ip_mkg.ko)时触发一次中断。在测试程序read时触发一次中断。
 通过代码内部打印查看结果,通过cat /proc/stat查看结果。
 

 2,OR中断资源分析

 2.1 硬件部分

 
 1,通过下面的代码可以看出:
 OR最多支持的外部中断线的数目为:31.其中只有(2~31)可以使用。

 OpenRisc-26-openrisc中断实验_第1张图片

OpenRisc-26-openrisc中断实验_第2张图片


 2,通过下面的代码可以看出:

目前已经使用的中断线为:2~23。
OpenRisc-26-openrisc中断实验_第3张图片


 3,通过下面的综合结果可以看出:

真正使用的为:2,4,6,14,15,16,20,21.共8根。具体如下:
SDC:3根。
USB:2根。
UART:1根。
simple_spi:1根。
eth:1根。
OpenRisc-26-openrisc中断实验_第4张图片

 

2.2 软件部分

通过下面的linux kernel代码可以看出:
OR的中断线有32根。(与硬件不匹配)。
OpenRisc-26-openrisc中断实验_第5张图片

 2.3 本实验使用的中断线为:24。

 

 3,实验内容

3.1 RTL编码

1>mycore.v

 

 

/*
*
* rill create 2013-05-07
*
*/

`include "orpsoc-defines.v"
module mycore
(     
	intr_o,//interrupt output
	
	wb_clk,			
	wb_rst,		
		
	wb_dat_i,			
	wb_adr_i,			
	wb_sel_i,		
	wb_cti_i,	
	wb_bte_i,		
	wb_we_i,		
	wb_cyc_i,		
	wb_stb_i,	
		
	wb_dat_o,		
	wb_ack_o,		
	wb_err_o,                    
	wb_rty_o
);
output  reg					 	intr_o;

input [addr_width-1:0]      	wb_adr_i;
input 			    			wb_stb_i;
input 			    			wb_cyc_i;
input [2:0] 				    wb_cti_i;
input [1:0] 				    wb_bte_i;
input 			      		    wb_clk;
input 			          		wb_rst;
input [31:0] 					wb_dat_i;
input [3:0] 					wb_sel_i;
input 							wb_we_i;
	
output reg [31:0] 		 		wb_dat_o;
output reg 			      	 	wb_ack_o;
output                			wb_err_o;
output  					 	wb_rty_o;

//external parameters
parameter addr_width = 32;
parameter mycore_adr = 0;

	

//local regs
reg [addr_width-1:0] num_1;
reg [addr_width-1:0] num_2;
reg [addr_width-1:0] sum;


parameter s_idle = 3'b000;
parameter s_read = 3'b001;
parameter s_write = 3'b010;

reg [2:0] state = s_idle;

//irq status
parameter irq_idle = 3'b000;
parameter irq_action = 3'b001;

reg [2:0] irq_state = irq_idle;
reg [7:0] irq_done;//irq flag

assign wb_err_o=0;
assign wb_rty_o=0;


always @(*)//sum process
begin
	sum = num_1 + num_2;
end

always @(posedge wb_clk)//interrupt process
begin
	if(wb_rst)
		begin
			intr_o <= 1'b0;
		end
	else
		begin
			case (irq_state)
			irq_idle:
				begin
					intr_o <= 1'b0;
					
					if( (32'd1 == num_1) && (irq_done == 8'd0) )
						begin
							irq_state <= irq_action;
							irq_done <= 8'd1;
						end
					else if( (32'd2 == num_1) && (irq_done == 8'd1) )
						begin
							irq_state <= irq_action;
							irq_done <= 8'd2;
						end
					else if( (32'd3 == num_1) && (irq_done == 8'd2) )
						begin
							irq_state <= irq_action;
							irq_done <= 8'd3;
						end
					else if( (32'd4 == num_1) && (irq_done == 8'd3) )
						begin
							irq_state <= irq_action;
							irq_done <= 8'd4;
						end
					else
						begin
							irq_state <= irq_idle;
						end
				end
				
			irq_action:
				begin
					intr_o <= 1'b1;
					irq_state <= irq_idle;
				end
				
			default:
				begin
					irq_state <= irq_idle;
					intr_o <= 1'b0;
				end
			endcase
		end
end

always @(posedge wb_clk)//wishbone interface
begin
	if(wb_rst)
		begin
			state <= s_idle;
		end
	else
		begin
			case(state)
			s_idle:
				begin
					wb_dat_o <= 1'b0;
					wb_ack_o <= 1'b0;
			
					if(wb_stb_i && wb_cyc_i && wb_we_i)
						begin
							state <= s_write;
						end
					else if(wb_stb_i && wb_cyc_i && !wb_we_i)
						begin
							state <= s_read;
						end
					else
						begin
							state <= s_idle;
						end
				end
	
			s_write:
				begin
					if(wb_adr_i == {mycore_adr,24'h000000})
						begin
							num_1 <= wb_dat_i;
							wb_ack_o <= 1'b1;
						end
					else if(wb_adr_i == {mycore_adr,24'h000004})
						begin
							num_2 <= wb_dat_i;
							wb_ack_o <= 1'b1;
						end
					else 
						begin
							//wb_ack_o=1'b0;
						end
				
					state <= s_idle;
				end
  
			s_read:
				begin
					if(wb_adr_i=={mycore_adr,24'h000000})
						begin
							wb_dat_o <= num_1;
							wb_ack_o <= 1'b1;
						end
					else if(wb_adr_i=={mycore_adr,24'h000004})
						begin
							wb_dat_o <= num_2;
							wb_ack_o <= 1'b1;
						end
					else if(wb_adr_i=={mycore_adr,24'h000008})
						begin
							wb_dat_o <= sum;
							wb_ack_o <= 1'b1;
						end
					else 
						begin
							wb_dat_o=0;
							wb_ack_o <= 1'b1;
						end
				
					state <= s_idle;

				end
		
		
			default:
				begin
					state <= s_idle;
				end
		
			endcase
		end
end

endmodule


/************** EOF ****************/


 



2>例化:orpsoc_top.v

OpenRisc-26-openrisc中断实验_第6张图片

 

3.2 RTL综合

如下图,中断线多了一根:共9根。
OpenRisc-26-openrisc中断实验_第7张图片

3.3 linux driver编码

1>ip_mkg.c

 

/*
*
* rill mkg driver
*
*/
#include <linux/vmalloc.h>
#include <linux/slab.h>

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <asm/uaccess.h> /* get_user and put_user */
//#include <linux/clk.h>
//#include <linux/ioport.h>
#include <asm/io.h> /*ioremap*/
#include <linux/platform_device.h> /*cleanup_module*/

#include <asm-generic/io.h>

#include "ip_mkg.h"


#include <linux/interrupt.h>

volatile int g_irq_test_counter = 0;


void	__iomem 	*g_mkg_mem_base = NULL;

static int device_open(struct inode *inode, struct file *file)
{
	g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN);
	if(NULL == g_mkg_mem_base)
	{
		printk(KERN_ERR "mkg open ioremap error!\n");
		return -1;
	}
	else
	{
		printk("kernel:mkg open ok!\n");
	}

	return 0;
}

static int device_release(struct inode *inode, struct file *file)
{
	return 0;
}


static ssize_t device_read(struct file *filp, char *buffer, size_t length, loff_t *offset)
{
	/*int ret_val = 0;

	char * data = NULL;
	
	data = (char*)kmalloc(4, GFP_KERNEL);
	if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) 

	ioread32(g_mkg_mem_base+length);
	printk("============read:%d\n",);*/
		iowrite32(0x02000000,g_mkg_mem_base);
			printk("request_irq ==2==!\n");
			printk("mkg g_irq_test_counter:%d!\n",(int)g_irq_test_counter);

	printk("kernel:mkg g_irq_test_counter:%d!\n",(int)g_irq_test_counter);
	
	return 1;
}

static ssize_t device_write(struct file *filp, const char *buffer, size_t count, loff_t *offset)
{
	//iowrite32(2,g_mkg_mem_base);
	return 1;
}

long device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)
{
#if 0

   int ret_val = 0;
   unsigned int ret = 0;
   struct reg_data *new_regs;
   printk("ioctl======\n");

   switch(ioctl_num)
   {
      case IOCTL_REG_SET:
	  {
		 new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL);
		 if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) 
		 	{
			    kfree(new_regs);
			    printk(KERN_ERR " error copy line_datafrom user.\n");
				return -1;
		 	}

			//iowrite16(new_regs->value,g_mkg_mem_base+new_regs->addr);
		 kfree(new_regs);
     }
	 break;

	case IOCTL_REG_GET:
	{
	 new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL);
	 if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) 
	 	{
		    kfree(new_regs);
		    printk(KERN_ERR " error copy line_datafrom user.\n");
			return -1;
	 	}

		//ret = ioread16(g_mkg_mem_base+new_regs->addr);
	 	kfree(new_regs);
		return ret;
	}
	break;
      
   }
#endif

  return -1;
}

struct file_operations our_file_ops = {
  .unlocked_ioctl = device_ioctl,
  .read = device_read,
  .write = device_write,
  .open = device_open,
  .release = device_release,
  .owner = THIS_MODULE,
};


static irqreturn_t ip_mkg_irq(int irq, void *dev)
{
		
	g_irq_test_counter = g_irq_test_counter+1;

	return IRQ_HANDLED;
}



void test(void)
{
	int err = 0;
	int loop = 0;
	
	printk("request_irq...\n");
	err = request_irq(MKG_IRQ_INDEX,ip_mkg_irq,0,"ip_mkg",NULL);
	if(err)
	{
		printk("request_irq error!\n");
	}
	else
	{
		printk("request_irq ok!\n");
	}


#if 1	
	printk("reg test start==\n");
	iowrite32(0x11223344,g_mkg_mem_base);
	iowrite32(0x11223344,g_mkg_mem_base+0x4);

	for(loop=0;loop<3;loop++)
		printk("====reg addr==0x%x==reg value:0x%x==\n",loop*4,ioread32(g_mkg_mem_base+4*loop));
#endif

	iowrite32(0x01000000,g_mkg_mem_base);
	printk("request_irq ==1==!\n");
	printk("mkg g_irq_test_counter:%d!\n",(int)g_irq_test_counter);

	/*iowrite32(0x02000000,g_mkg_mem_base);
	printk("request_irq ==2==!\n");
	printk("mkg g_irq_test_counter:%d!\n",(int)g_irq_test_counter);
	
	iowrite32(0x03000000,g_mkg_mem_base);
	printk("request_irq ==3==!\n");
	printk("mkg g_irq_test_counter:%d!\n",(int)g_irq_test_counter);
	*/
	printk("<----ip_mkg test end---->\n"); 
	

}






int init_module()
{
	int ret_val;
	int ret;
	void __iomem *ret_from_request;


	//=== Allocate character device 
	ret_val = register_chrdev(MAJOR_NUM, DEVICE_NAME, &our_file_ops);
	if (ret_val < 0)
	{
		printk(KERN_ALERT " device %s failed(%d)\n", DEVICE_NAME, ret_val);
		return ret_val;
	}

	ret = check_mem_region(MKG_MEM_BASE, MKG_MEM_LEN);
	if (ret < 0) 
	{
		printk(KERN_ERR "mkg check_mem_region bussy error!\n");
		return -1;
	}

	ret_from_request = request_mem_region(MKG_MEM_BASE, MKG_MEM_LEN, "ip_mkg");

	//===ioremap mkg registers

	g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN);
	if(NULL == g_mkg_mem_base)
	{
		printk(KERN_ERR "mkg ioremap error!\n");
		return -1;
	}
	else
	{
		;//printk("mkg ioremap addr:%d!\n",(unsigned int)g_mkg_mem_base);
	}

	printk("mkg module init done!\n");


	test();

	return 0;
}

void cleanup_module()
{
	release_mem_region(MKG_MEM_BASE, MKG_MEM_LEN);

	unregister_chrdev(MAJOR_NUM, DEVICE_NAME);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rill zhen:[email protected]");


 

 


2>ip_mkg.h

 

#ifndef __IP_MKG_H__
#define __IP_MKG_H__

#define MAJOR_NUM	102
#define DEVICE_NAME	"ip_mkg"
#define MKG_MEM_BASE 0x97000000
#define MKG_MEM_LEN	32

#define MKG_IRQ_INDEX	24


#define IOCTL_REG_SET 0
#define IOCTL_REG_GET 1



struct reg_data 
{
	unsigned short addr;
	int value;
};

#endif


 

3>makefile

# To build modules outside of the kernel tree, we run "make"
# in the kernel source tree; the Makefile these then includes this
# Makefile once again.
# This conditional selects whether we are being included from the
# kernel Makefile or not.
ifeq ($(KERNELRELEASE),)

    # Assume the source tree is where the running kernel was built
    # You should set KERNELDIR in the environment if it's elsewhere
    KERNELDIR ?= /home/openrisc/soc-design/linux
    # The current directory is passed to sub-makes as argument
    PWD := $(shell pwd)

modules:
	make -C $(KERNELDIR) M=$(PWD) modules ARCH=openrisc CROSS_COMPILE=or32-linux-

modules_install:
	make -C $(KERNELDIR) M=$(PWD) modules_install ARCH=openrisc CROSS_COMPILE=or32-linux-

clean:
	rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions *.order *.symvers

.PHONY: modules modules_install clean

else
    # called from kernel build system: just declare what our modules are
    obj-m := ip_mkg.o
endif


3.4 应用层编码

1>mkg_test.c

 

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>



int main()
{
	int fd = 0;
	int read_data = 0;
	char buffer[10] = {0};	

	fd =open("/dev/ip_mkg",O_RDWR);
	if(0 == fd)
	{
		printf("file /dev/ip_mkg open error!\n");
		return 0;
	}
	else
	{
		printf("file open ok!\n\n\n");
	}
	
	read(fd,buffer,1);

	close(fd);


	return 0;
}

 

 


 4,实验步骤

1>进行RTL编码与综合
2>编写linux下的driver
3>编写,编译测试应用程序
4>FPGA板上验证
具体操作步骤请参考:
http://blog.csdn.net/rill_zhen/article/details/8700937
5>需要注意的是,在跑测试程序前要创建设备节点(mknod /dev/ip_mkg c 102 0)
 

 5,实验结果

1>代码打印结果,如下图:

OpenRisc-26-openrisc中断实验_第8张图片


2>cat /proc/stat
OpenRisc-26-openrisc中断实验_第9张图片

 

3>可见driver给mycore发出了两次指令,mycore也产生了两次中断,中断处理程序也执行了两次。

 

4>反面验证:除了正面显示实验正确外,还可以从反面进行验证,显示实验正确。

1》将指令发送代码注掉,再测,没有中断产生。

2》修改注册中断号为25,再测,也没有中断产生。


5>需要注意的是:
1》如果连续发送中断指令(就像driver中注释掉的那样),就可能只产生一次中断。

2》发送中断指令后,后面的打印信息,可能不会立即更新(即,counter仍为0)。

6,小结

通过上述步骤,对openrisc 的外部中断的使用就比较了解了。

这对于SOC的开发又多了一种工作机制,既可以采用轮询,也可以采用中断。

enjoy!

你可能感兴趣的:(open)