#include <stdio.h> #include <string.h> #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__) #else #define debug(...) #endif #define N 20010 #define M 1800000 #define MAX_INT 0x3fffffff #define min(a, b) (a) < (b) ? (a) : (b) /* 图的邻接表+静态链表表示法 */ struct Edge{ int u, v, weight; int next; }; struct Edge edge[M]; int head[N]; /* head[u]表示顶点u第一条邻接边的序号, 若head[u] = -1, u没有邻接边 */ int n; int current; /* 当前有多少条边 */ void add_edge(int u, int v, int weight) { /* int i; //检查u->v是否存在 for (i = head[u]; edge[i].v != v && i != -1; i = edge[i].next); if (i != -1) { edge[i].weight = weight; return; }*/ /* 添加正向边u->v */ edge[current].u = u; edge[current].v = v; edge[current].weight = weight; edge[current].next = head[u]; head[u] = current++; /* 添加反向边v->u */ edge[current].u = v; edge[current].v = u; edge[current].weight = 0; edge[current].next = head[v]; head[v] = current++; } int isap(int s, int e) { int i, u, v, max_flow, aug, min_lev; /* 寻找增广路径的过程中, curedge[u]保存的是对于顶点u当前遍历的边, 寻找顶点u的邻接边时不用每次 * 都从head[u]开始找, 而是从curedge[u]开始找, 这样就减少了搜索次数 * 当增广路径找到后 * curedge保存的就是一条增广路径了, 比如 * 0---四-->1---六-->2--七--->3---八--->4 0,1,2,3,4是顶点号, 四六七八是边的序号 * curedge[0] = 四, curedge[1] = 六, ... curedge[3] = 8, curedge[i]即保存找过的轨迹 */ int curedge[N], parent[N], level[N]; /* count[l]表示对于属于层次l的顶点个数, 如果某个层次没有顶点了, * 就出现断层, 意味着没有增广路径了, 这就是gap优化, 可以提前结束寻找过程 * augment[v]表示从源点到顶点v中允许的最大流量, 即这条路线的最小权重 */ int count[N], augment[N]; memset(level, 0, sizeof(level)); memset(count, 0, sizeof(count)); //初始时每个顶点都从第一条边开始找 for (i = 0; i <= n; i++) { curedge[i] = head[i]; } max_flow = 0; augment[s] = MAX_INT; parent[s] = -1; u = s; while (level[s] < n) { /* 不能写成level[s] < MAX_INT */ if (u == e) { /* 找到一条增广路径 */ max_flow += augment[e]; aug = augment[e]; debug("找到一条增广路径, augment = %d\n", aug); debug("%d", e); for (v = parent[e]; v != -1; v = parent[v]) { /* 从后往前遍历路径 */ i = curedge[v]; debug("<--%d", v); edge[i].weight -= aug; edge[i^1].weight += aug; /* 如果i是偶数, i^1 = i+1, 如果i是奇数, i^1 = i-1 */ augment[edge[i].v] -= aug; if (edge[i].weight == 0) u = v; /* u指向增广后最后可达的顶点, 下次就从它继续找 */ } debug("\n"); } /* 从顶点u往下找邻接点 */ for (i = curedge[u]; i != -1; i = edge[i].next) { /* 从curedge[u]开始找, 而不是head[u]从头开始, curedge[u]保存的是上次找过的边 */ v = edge[i].v; if (edge[i].weight > 0 && level[u] == (level[v]+1)) { /* 找到一条边就停止 */ augment[v] = min(augment[u], edge[i].weight); curedge[u] = i; parent[v] = u; u = v; break; } } if (i == -1) { /* 没有邻接点, 回溯到上一个点 */ if (--count[level[u]] == 0) { debug("顶点%d在level %d断层\n", u, level[u]); break; } curedge[u] = head[u]; /* 顶点u的所有边都试过了,没有出路, 更新了u的level后, 又从第一条边开始找 */ //找出level最小的邻接点 min_lev = n; for (i = head[u]; i != -1; i = edge[i].next) { if (edge[i].weight > 0) { min_lev = min(level[edge[i].v], min_lev); } } level[u] = min_lev + 1; count[level[u]]++; debug("顶点%d的level= %d\n", u, level[u]); debug("顶点%d走不通, 回到%d\n", u, edge[curedge[u]].u); if (u != s ) u = parent[u]; /* 回退到上一个顶点 */ } } return max_flow; } int main() { int m, u, v, w, a, b; while (scanf("%d %d", &n, &m) != EOF) { memset(edge, 0, sizeof(edge)); memset(head, -1, sizeof(head)); current = 0; for (u = 1; u <= n; u++) { scanf("%d %d", &a, &b); add_edge(0, u, a); add_edge(u, n+1, b); } while (m--) { scanf("%d %d %d", &u, &v, &w); /* 如果调用函数添加边, 速度明显边慢 */ //add_edge(u, v, w); //add_edge(v, u, w); /* 添加正向边u->v */ edge[current].u = u; edge[current].v = v; edge[current].weight = w; edge[current].next = head[u]; head[u] = current++; /* 添加反向边v->u */ edge[current].u = v; edge[current].v = u; edge[current].weight = w; edge[current].next = head[v]; head[v] = current++; } n += 2; printf("%d\n", isap(0, n-1)); } return 0; }