记录近期小改Apriori至MapReduce上的心得

·背景

    前一阵,一直在研究一些ML的东东,后来工作关系暂停了一阵。现在继续把剩下一些热门的算法再吃吃透,"无聊+逗比"地把他们搞到MapReduce上。这次选择的入手对象为Apriori,也就是大家俗称的"关联规则挖掘",有别于CF(协同过滤)的正交输出。再俗一点,就是常被人提及的"啤酒+面包"的故事。

 

·Apriori算法简介

    在关联规则挖掘方面,有两项著名的算法:Apriori和FPgrowth。两者各有特点,由于计算量级别的差异,越来越多的人选择了后者。但这并不意味着Apriori就是垃圾。个人的理解,FPgrowth为MP而生,Apriori为容器而生。当单日志量达到5G,10G以上Apriori在计算方面的吃亏逐步显现,即便如此,对于人们对于尽可能减少Apriori扫描次数的优化机制仍然乐此不疲。尤其是作为容器方面的选择,可以极大的减少整个代码的实现过程和增加可读性,同时又能训练你的脑力和对容器的使用创意。

记录近期小改Apriori至MapReduce上的心得 

作为单机版本来说,整体Apriori的逻辑过程如上所述,相比"树"和"图"来说要简单许多,但是仍然暗藏不少重复计算的陷阱。

  1. 基本条件,有交易记录T和自己设定的支持度support。
  2. 从1维最小元素开始做group by+count(*),得到统计集合
  3. 按support条件,把不符合条件的统计对象过滤掉,类似oracle having追加条件。
  4. 把渣过滤完毕后,做完全组合,也就是大家在初中时候学的完全唯一组合,得到频繁项组合。这其中你也可以自己设个条件,认为XXX就是最大的频繁项。
  5. 以这频繁项为基础,去扫描交易记录T,得到步骤2。以此反复,找到你想要的关联组合。

记录近期小改Apriori至MapReduce上的心得 

作为MP版来说,Apriopi如何压榨Map的资源,真是件令人头痛的事情。如上图所述:

  1. 每个Map DataNode都会得到最大的频繁项。如果整体交易记录构成是完全随机分布,那最后的C的数量会非常集中而且稳定。
  2. 不幸的是,你无法保证十几,几十G的交易T中的交易习惯,一定是随机均匀分布,如果是正态、泊松、二项式等等。那C中最大项集合数量会猛增。
  3. 这时候,必须在从Map DataNode中继续过一遍集合,删除干扰度较高的最大频繁项,尽量找到唯一最大频繁。

 

· 一些心得体会

  1. 就像拍照一样,要先构图。整段代码在把小孩子哄睡后花了近一周时间才完成。其中6成时间用于数据结构设计,3成时间用来code,1成用来调试。
  2. 数据结构返工两次,最后剑走偏锋。楼主逗比地用了二维set,网上都了一把,用的人不多,不是那种new出来的不带属性那种,而是set套set,和map套set。极尽c++容器之能事。感觉好的数据结构,至少少写200行代码。代码思路: C[频繁set<set>]-> [Struct/raw_c] -> Map<set,int> -> L -> set<set> 
  3. 如何减少计算量是件恶心的事,把文本入内存需要一次N量计算,扫面一次就是N量。整个Apriorio的计算至少K·N,着实笨重,这还不算不少代码洁癖的爱好,还会反复叠加计算量。
  4. 附属的是一个单机版的Apriori,MP的就补贴了,思路如上图所述。在生产环境中还需要考虑到hadoop的输出限制和函数返回值形式,需要尽可能使用引用和指针,减少内存交互。
  5. 官网有提到支持度这个概念,当然大家也可以完全按照自己的意愿做一些改动和设定,条条大道去罗马,基本就这个模式了。

· 单机版   centos 6(2.6)+gcc433

#include <iostream>

#include <sstream>

#include <fstream>

#include <string.h>

#include <vector>

#include <map>

#include <set>

#include <algorithm>



using namespace std; 



typedef struct {                                                          //原始集合结构定义

   vector<string> ss;

} t_raw_jh;



typedef struct {                              //有效数据/统计集合定义 

   set<string> ss;

   int sup_num;

} t_raw_tj;





t_raw_jh   raw_c[50];                         //原始数据

map<set<string>,int> raw_cnt_base;            //原始元素统计集合

t_raw_tj   L[10];                             //洗出来的单集合组合

//set<set>   new_kc;                          //洗出来的排列对象集,作为下次扫描的催化剂

int raw_num=0;                                //原始数据计数器

int l_num=0;                                  //统计数据计算器

int raw_msup=2;                               //频繁项支持度



/* C[频繁set<set>]-> [Struct/raw_c] -> Map<set,int> -> L -> set<set> */



void CountEleBase(string line,const char* delim,int raw_num);   //1+pre,把一条元素洗到二维颗粒,同时统计group by count

void CountEleReal(set<set<string> > &cc);                       //1+real,根据3的催化剂,扫描原始记录,同时统计group by count

int WashEleBase();                                              //2,把MAP SORT[group by count]洗出大于支持度的对象集

set<set<string> > GetNewKc(int size);                           //3,把洗出的对象集合,极限排列出所有可能,作为下次扫描的催化剂

void Display();                                                 //显示原始集合、单元素非排序group by count

void ClearTj();                                                 //把统计表给清空

void RunApriori(set<set<string> > &fc);                         //嵌套跑,当然也可以迭代WHILE跑,入参为频繁项





int main()

{

         std::ios::sync_with_stdio(false);

         string filename="./ap001.txt";

         string line;

         ifstream ifs;

         ifs.open(filename.c_str());

         

         while(getline(ifs,line))

         {

                 CountEleBase(line,",",raw_num);

                 raw_num++;

         }



        // Display();

    //得到第一组经过支持度过滤的C 

        set<set<string> > aaa;   //频繁项,根据有效支持元素得出的组合

        aaa=GetNewKc(WashEleBase());



        RunApriori(aaa);



}



void RunApriori(set<set<string> > &fc)

{

    if(l_num==1) return;

    CountEleReal(fc);

        fc.clear();

        fc=GetNewKc(WashEleBase());

        RunApriori(fc);

}



void CountEleReal(set<set<string> > &cc)

{

          //扫描记录集

          cout<<"\n-----扫描记录集-----"<<endl;

          //迭代器定义好,在该函数内之后会用到

          set<set<string> >::iterator ot_it;

          set<string>::iterator in_it;

          raw_cnt_base.clear();



          for(ot_it=cc.begin();ot_it!=cc.end();ot_it++)

          {

                 int map_cc=0; 

                 for(int i=0;i<raw_num;i++)

             {

                        vector<string>::iterator res; 

                        for(res=raw_c[i].ss.begin();res!=raw_c[i].ss.end();res++)

                        {

                                cout<<*res<<" ";

                        }

                        cout<<"|";

                        int map_in_cc=0;

                        for(in_it=(*ot_it).begin();in_it!=(*ot_it).end();in_it++)

                        {

                                cout<<*in_it<<" ";

                                res=find(raw_c[i].ss.begin(),raw_c[i].ss.end(),*in_it);

                                if(res!=raw_c[i].ss.end()) map_in_cc++;

                        }

                        if(map_in_cc==(*ot_it).size()) map_cc++;

                        cout<<"|"<<map_in_cc<<endl;

                 }

                 raw_cnt_base[*ot_it]=map_cc;

                 cout<<"-->"<<map_cc<<endl;

      }

}



set<set<string> > GetNewKc(int size)

{

           vector<string>::iterator ss_it;

           set<string> kk[size];

           set<set<string> >  new_kc;

           int pi=0;



           set<string>::iterator kk_it;

           //做两两极限排列组合

           for(int i=0;i<l_num;i++)

           {

               set<string> tmp=L[i].ss;

               for(int j=i+1;j<l_num;j++)

               {

                                for(kk_it=L[j].ss.begin();kk_it!=L[j].ss.end();kk_it++)

                                {

                                      tmp.insert(*kk_it); 

                            }

                        new_kc.insert(tmp);

                                tmp=L[i].ss;

           }

       }



           cout<<"有效支持元素 ---> C组合[频繁项]:"<<endl;

           set<set<string> >::iterator out_it;

           set<string>::iterator in_it;

           for(out_it=new_kc.begin();out_it!=new_kc.end();out_it++)

           {

                for(in_it=(*out_it).begin();in_it!=(*out_it).end();in_it++)

                {

                   cout<<*in_it<<",";

                }

                cout<<endl;

           }

           return  new_kc;

}







int WashEleBase()

{

        map<set<string>,int>::iterator raw_cnt_it;

    int i=0;

        l_num=0;

        ClearTj();

        for(raw_cnt_it=raw_cnt_base.begin();raw_cnt_it!=raw_cnt_base.end();raw_cnt_it++)

        {

           if(raw_cnt_it->second>=raw_msup)

           {

                   L[i].ss=raw_cnt_it->first;

                   L[i++].sup_num=raw_cnt_it->second;

                   l_num++;

           }

        }



        //Display

        cout<<"有效支持元素:"<<endl;

        set<string>::iterator ss_it;

        for(i=0;i<l_num;i++)

        {

                for(ss_it=L[i].ss.begin();ss_it!=L[i].ss.end();ss_it++)

                {

                        cout<<*ss_it<<",";

                }

                cout<<"|"<<L[i].sup_num<<endl;

        }

        return i;

}





void CountEleBase(string line,const char* delim,int raw_num)

{

                 char *p=NULL,*q=NULL;

                 p=const_cast<char*>(line.c_str());

                 while(p)

                 {

                         q=strsep(&p,",");

                         set<string> load_ss;

                         raw_c[raw_num].ss.push_back(q);

                         load_ss.insert(q); raw_cnt_base[load_ss]++;             

                 }

}



void Display()

{

         cout<<"----Print Map-------"<<endl;

         map<set<string>,int>::iterator raw_cnt_it;

         set<string>::iterator ss_it;

         for(raw_cnt_it=raw_cnt_base.begin();raw_cnt_it!=raw_cnt_base.end();raw_cnt_it++)

         {

                 for(ss_it=(raw_cnt_it->first).begin();ss_it!=(raw_cnt_it->first).end();ss_it++)

                 {

                        cout<<*ss_it<<" ";

                 }

                 cout<<":"<<raw_cnt_it->second<<endl;

         }



         //raw_cnt_base.clear();



         cout<<"----Print Raw-------"<<endl;

         vector<string>::iterator raw_c_it;

         for(int i=0;i<raw_num;i++)

     {

                 for(raw_c_it=raw_c[i].ss.begin();raw_c_it!=raw_c[i].ss.end();raw_c_it++)

                 {

                          cout<<*raw_c_it<<" ";

                 }

                 cout<<endl;

         }

}



void ClearTj()

{

        for(int i=0;i<10;i++)

        {

                L[i].sup_num=0;

                L[i].ss.clear();

        }



}

  

· 另

    望各位路过的大侠,嘴上留情,手上斧正,看看能否进一步压缩计算空间量~~。^_^。

你可能感兴趣的:(mapreduce)