redis源码笔记 - 有关LRU cache相关的代码

redis可以被作为类似memcached的应用级缓存使用,在内存超过限制时,按照配置的策略,淘汰掉相应的kv,使得内存可以继续留有足够的空间保存新的数据。

redis的conf文件中有对该机制的一份很好的解释:

194 # Don't use more memory than the specified amount of bytes.195 # When the memory limit is reached Redis will try to remove keys196 # accordingly to the eviction policy selected (see maxmemmory-policy).197 #198 # If Redis can't remove keys according to the policy, or if the policy is199 # set to 'noeviction', Redis will start to reply with errors to commands200 # that would use more memory, like SET, LPUSH, and so on, and will continue201 # to reply to read-only commands like GET.202 #203 # This option is usually useful when using Redis as an LRU cache, or to set204 # an hard memory limit for an instance (using the 'noeviction' policy).205 #206 # WARNING: If you have slaves attached to an instance with maxmemory on,207 # the size of the output buffers needed to feed the slaves are subtracted208 # from the used memory count, so that network problems / resyncs will209 # not trigger a loop where keys are evicted, and in turn the output210 # buffer of slaves is full with DELs of keys evicted triggering the deletion211 # of more keys, and so forth until the database is completely emptied.212 #213 # In short... if you have slaves attached it is suggested that you set a lower214 # limit for maxmemory so that there is some free RAM on the system for slave215 # output buffers (but this is not needed if the policy is 'noeviction').216 #217 # maxmemory <bytes>

注意,在redis按照master-slave使用时,其maxmeory应设置的比实际物理内存稍小一些,给slave output buffer留有足够的空间。

redis支持如下五种缓存淘汰策略:

219 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory220 # is reached? You can select among five behavior:221 # 222 # volatile-lru -> remove the key with an expire set using an LRU algorithm223 # allkeys-lru -> remove any key accordingly to the LRU algorithm224 # volatile-random -> remove a random key with an expire set225 # allkeys->random -> remove a random key, any key226 # volatile-ttl -> remove the key with the nearest expire time (minor TTL)227 # noeviction -> don't expire at all, just return an error on write operations

注释已经解释的很清楚了,不再赘述。

其缓存管理功能,由redis.c文件中的freeMemoryIfNeeded函数实现。如果maxmemory被设置,则在每次进行命令执行之前,该函数均被调用,用以判断是否有足够内存可用,释放内存或返回错误。如果没有找到足够多的内存,程序主逻辑将会阻止设置了REDIS_COM_DENYOOM flag的命令执行,对其返回command not allowed when used memory > 'maxmemory'的错误消息。

具体代码如下:

int freeMemoryIfNeeded(void) {    size_t mem_used, mem_tofree, mem_freed;    int slaves = listLength(server.slaves);    /* Remove the size of slaves output buffers and AOF buffer from the     * count of used memory. */ 计算占用内存大小时,并不计算slave output buffer和aof buffer,因此maxmemory应该比实际内存小,为这两个buffer留足空间。    mem_used = zmalloc_used_memory();    if (slaves) {        listIter li;        listNode *ln;        listRewind(server.slaves,&li);        while((ln = listNext(&li))) {            redisClient *slave = listNodeValue(ln);            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);            if (obuf_bytes > mem_used)                mem_used = 0;            else                mem_used -= obuf_bytes;        }    }    if (server.appendonly) {        mem_used -= sdslen(server.aofbuf);        mem_used -= sdslen(server.bgrewritebuf);    }    /* Check if we are over the memory limit. */    if (mem_used <= server.maxmemory) return REDIS_OK;    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)        return REDIS_ERR; /* We need to free memory, but policy forbids. */    /* Compute how much memory we need to free. */    mem_tofree = mem_used - server.maxmemory;    mem_freed = 0;    while (mem_freed < mem_tofree) {        int j, k, keys_freed = 0;        for (j = 0; j < server.dbnum; j++) {            long bestval = 0; /* just to prevent warning */            sds bestkey = NULL;            struct dictEntry *de;            redisDb *db = server.db+j;            dict *dict;            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)            {                dict = server.db[j].dict;            } else {                dict = server.db[j].expires;            }            if (dictSize(dict) == 0) continue;            /* volatile-random and allkeys-random policy */            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)            {                de = dictGetRandomKey(dict);                bestkey = dictGetEntryKey(de);            }//如果是random delete,则从dict中随机选一个key            /* volatile-lru and allkeys-lru policy */            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)            {                for (k = 0; k < server.maxmemory_samples; k++) {                    sds thiskey;                    long thisval;                    robj *o;                    de = dictGetRandomKey(dict);                    thiskey = dictGetEntryKey(de);                    /* When policy is volatile-lru we need an additonal lookup                     * to locate the real key, as dict is set to db->expires. */                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)                        de = dictFind(db->dict, thiskey); //因为dict->expires维护的数据结构里并没有记录该key的最后访问时间                    o = dictGetEntryVal(de);                    thisval = estimateObjectIdleTime(o);                    /* Higher idle time is better candidate for deletion */                    if (bestkey == NULL || thisval > bestval) {                        bestkey = thiskey;                        bestval = thisval;                    }                }//为了减少运算量,redis的lru算法和expire淘汰算法一样,都是非最优解,lru算法是在相应的dict中,选择maxmemory_samples(默认设置是3)份key,挑选其中lru的,进行淘汰            }            /* volatile-ttl */            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {                for (k = 0; k < server.maxmemory_samples; k++) {                    sds thiskey;                    long thisval;                    de = dictGetRandomKey(dict);                    thiskey = dictGetEntryKey(de);                    thisval = (long) dictGetEntryVal(de);                    /* Expire sooner (minor expire unix timestamp) is better                     * candidate for deletion */                    if (bestkey == NULL || thisval < bestval) {                        bestkey = thiskey;                        bestval = thisval;                    }                }//注意ttl实现和上边一样,都是挑选出maxmemory_samples份进行挑选            }            /* Finally remove the selected key. */            if (bestkey) {                long long delta;                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));                propagateExpire(db,keyobj); //将del命令扩散给slaves                /* We compute the amount of memory freed by dbDelete() alone.                 * It is possible that actually the memory needed to propagate                 * the DEL in AOF and replication link is greater than the one                 * we are freeing removing the key, but we can't account for                 * that otherwise we would never exit the loop.                 *                 * AOF and Output buffer memory will be freed eventually so                 * we only care about memory used by the key space. */                delta = (long long) zmalloc_used_memory();                dbDelete(db,keyobj);                delta -= (long long) zmalloc_used_memory();                mem_freed += delta;                server.stat_evictedkeys++;                decrRefCount(keyobj);                keys_freed++;                /* When the memory to free starts to be big enough, we may                 * start spending so much time here that is impossible to                 * deliver data to the slaves fast enough, so we force the                 * transmission here inside the loop. */                if (slaves) flushSlavesOutputBuffers();            }        }//在所有的db中遍历一遍,然后判断删除的key释放的空间是否足够        if (!keys_freed) return REDIS_ERR; /* nothing to free... */    }    return REDIS_OK;}

注意,此函数是在执行特定命令之前进行调用的,并且在当前占用内存低于限制后即返回OK。因此可能在后续执行命令后,redis占用的内存就超过了maxmemory的限制。因此,maxmemory是redis执行命令所需保证的最大内存占用,而非redis实际的最大内存占用。(在不考虑slave buffer和aof buffer的前提下)

你可能感兴趣的:(cache)