基于Eclipse的Hadoop开发环境配置方法

(1)启动hadoop守护进程

在Terminal中输入如下命令:

$ bin/hadoop namenode -format

$ bin/start-all.sh


(2)在Eclipse上安装Hadoop插件

找到hadoop的安装路径,我的是hadoop-0.20.2,将/home/wenqisun/hadoop-0.20.2/contrib/eclipse-plugin/下的hadoop-0.20.2- eclipse-plugin.jar拷贝到eclipse安装目录下的plugins里,我的是在/home/wenqisun/eclipse /plugins/下。

然后重启eclipse,点击主菜单上的window-->preferences,在左边栏中找到Hadoop Map/Reduce,点击后在右边对话框里设置hadoop的安装路径即主目录,我的是/home/wenqisun/hadoop-0.20.2。


(3)配置Map/Reduce Locations

在Window-->Show View中打开Map/Reduce Locations。
在Map/Reduce Locations中New一个Hadoop Location。
在打开的对话框中配置Location name(为任意的名字)。
配置Map/Reduce Master和DFS Master,这里的Host和Port要和已经配置的mapred-site.xml 和core-site.xml相一致。
一般情况下为
Map/Reduce Master
Host: localhost
Port: 9001
DFS Master
Host: localhost
Port: 9000
配置完成后,点击Finish。如配置成功,在DFS Locations中将显示出新配置的文件夹。


(4)新建项目

创 建一个MapReduce Project,点击eclipse主菜单上的File-->New-->Project,在弹出的对话框中选择Map/Reduce Project,之后输入Project的名,例如Q1,确定即可。然后就可以新建Java类,比如你可以创建一个WordCount 类,然后将你安装的hadoop程序里的WordCount源程序代码(版本不同会有区别),我的是在/home/wenqisun/hadoop-0.20.2/src /examples/org/apache/hadoop/examples/WordCount.java,写到此类中。以下是WordCount的源代码:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

(3)配置参数

点击Run-->Run Configurations,在弹出的对话框中左边栏选择Java Application,点击右键New,在右边栏中对Arguments进行配置。

在Program arguments中配置输入输出目录参数

/home/wenqisun/in /home/wenqisun/out

这里的路径是文件存储的路径。

在VM arguments中配置VM arguments的参数

-Xms512m -Xmx1024m -XX:MaxPermSize=256m

注意:

in文件夹是需要在程序运行前创建的,out文件夹是不能提前创建的,要由系统自动生成,否则运行时会出现错误。


(4)点击Run运行程序。

程序的运行结果可在out目录下进行查看。

在Console中可以查看到的运行过程为:

12/04/07 06:21:00 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
12/04/07 06:21:00 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
12/04/07 06:21:00 INFO input.FileInputFormat: Total input paths to process : 2
12/04/07 06:21:01 INFO mapred.JobClient: Running job: job_local_0001
12/04/07 06:21:01 INFO input.FileInputFormat: Total input paths to process : 2
12/04/07 06:21:02 INFO mapred.MapTask: io.sort.mb = 100
12/04/07 06:21:30 INFO mapred.MapTask: data buffer = 79691776/99614720
12/04/07 06:21:30 INFO mapred.MapTask: record buffer = 262144/327680
12/04/07 06:21:32 INFO mapred.JobClient:  map 0% reduce 0%
12/04/07 06:21:34 INFO mapred.MapTask: Starting flush of map output
12/04/07 06:21:40 INFO mapred.LocalJobRunner: 
12/04/07 06:21:40 INFO mapred.MapTask: Finished spill 0
12/04/07 06:21:40 INFO mapred.JobClient:  map 100% reduce 0%
12/04/07 06:21:40 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
12/04/07 06:21:40 INFO mapred.LocalJobRunner: 
12/04/07 06:21:40 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
12/04/07 06:21:44 INFO mapred.MapTask: io.sort.mb = 100
12/04/07 06:22:00 INFO mapred.MapTask: data buffer = 79691776/99614720
12/04/07 06:22:00 INFO mapred.MapTask: record buffer = 262144/327680
12/04/07 06:22:03 INFO mapred.MapTask: Starting flush of map output
12/04/07 06:22:03 INFO mapred.MapTask: Finished spill 0
12/04/07 06:22:03 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
12/04/07 06:22:03 INFO mapred.LocalJobRunner: 
12/04/07 06:22:03 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.
12/04/07 06:22:04 INFO mapred.LocalJobRunner: 
12/04/07 06:22:04 INFO mapred.Merger: Merging 2 sorted segments
12/04/07 06:22:05 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 86 bytes
12/04/07 06:22:05 INFO mapred.LocalJobRunner: 
12/04/07 06:22:08 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/04/07 06:22:08 INFO mapred.LocalJobRunner: 
12/04/07 06:22:08 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/04/07 06:22:08 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /home/wenqisun/out
12/04/07 06:22:08 INFO mapred.LocalJobRunner: reduce > reduce
12/04/07 06:22:08 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
12/04/07 06:22:08 INFO mapred.JobClient:  map 100% reduce 100%
12/04/07 06:22:09 INFO mapred.JobClient: Job complete: job_local_0001
12/04/07 06:22:09 INFO mapred.JobClient: Counters: 12
12/04/07 06:22:09 INFO mapred.JobClient:   FileSystemCounters
12/04/07 06:22:09 INFO mapred.JobClient:     FILE_BYTES_READ=39840
12/04/07 06:22:09 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=80973
12/04/07 06:22:09 INFO mapred.JobClient:   Map-Reduce Framework
12/04/07 06:22:09 INFO mapred.JobClient:     Reduce input groups=5
12/04/07 06:22:09 INFO mapred.JobClient:     Combine output records=7
12/04/07 06:22:09 INFO mapred.JobClient:     Map input records=4
12/04/07 06:22:09 INFO mapred.JobClient:     Reduce shuffle bytes=0
12/04/07 06:22:09 INFO mapred.JobClient:     Reduce output records=5
12/04/07 06:22:09 INFO mapred.JobClient:     Spilled Records=14
12/04/07 06:22:09 INFO mapred.JobClient:     Map output bytes=78
12/04/07 06:22:10 INFO mapred.JobClient:     Combine input records=8
12/04/07 06:22:10 INFO mapred.JobClient:     Map output records=8
12/04/07 06:22:10 INFO mapred.JobClient:     Reduce input records=7

作者:wenqisun 发表于2012-4-7 21:36:04 原文链接
阅读:3 评论:0 查看评论

你可能感兴趣的:(eclipse,hadoop,开发)