Java虚拟机(JVM)中的内存设置详解及优化

/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -XX:GCTimeRatio=19 -Xnoclassgc -XX:+DisableExplicitGC -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:-CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=70 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log

堆大小设置

JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。

典型JVM参数设置:

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k

-Xmx3550m:设置JVM最大可用内存为3550M。

-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。

-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0

-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5

-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6

-XX:MaxPermSize=16m:设置持久代大小为16m。

-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。

回收器选择

JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。

吞吐量优先的并行收集器

如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。

典型JVM参数配置:

java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20

-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。

-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC

-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100

-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy

-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

响应时间优先的并发收集器

如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。

典型JVM参数配置:

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC

-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。

-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection

-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。

-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片

辅助信息

JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:

-XX:+PrintGC

输出形式:

[GC 118250K->113543K(130112K), 0.0094143 secs]  
[Full GC 121376K->10414K(130112K), 0.0650971 secs] 
-XX:+PrintGCDetails
输出形式:

[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]  
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用

输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]

-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用

输出形式:Application time: 0.5291524 seconds

-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用

输出形式:Total time for which application threads were stopped: 0.0468229 seconds

-XX:PrintHeapAtGC:打印GC前后的详细堆栈信息

输出形式:

34.702: [GC {Heap before gc invocations=7: 
def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000) 
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000) 
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000) 
to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000) 
tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000) 
the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000) 
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000) 
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000) 
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000) 
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000) 
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8: 
def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000) 
eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000) 
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000) 
to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000) 
tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000) 
the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000) 
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000) 
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000) 
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000) 
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000) 

, 0.0757599 secs] 
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。

常见JVM参数配置汇总

堆设置

-Xms:初始堆大小

-Xmx:最大堆大小

-XX:NewSize=n:设置年轻代大小

-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4

-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5

-XX:MaxPermSize=n:设置持久代大小

收集器设置

-XX:+UseSerialGC:设置串行收集器

-XX:+UseParallelGC:设置并行收集器

-XX:+UseParalledlOldGC:设置并行年老代收集器

-XX:+UseConcMarkSweepGC:设置并发收集器

垃圾回收统计信息

-XX:+PrintGC

-XX:+PrintGCDetails

-XX:+PrintGCTimeStamps

-Xloggc:filename

并行收集器设置

-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。

-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间

-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)

并发收集器设置

-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。

-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

四、调优总结

年轻代大小选择

响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。

吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。

年老代大小选择

响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:

并发垃圾收集信息

持久代并发收集次数

传统GC信息

花在年轻代和年老代回收上的时间比例

减少年轻代和年老代花费的时间,一般会提高应用的效率

吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。

较小堆引起的碎片问题

因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下JVM参数配置:

-XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。

-XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

JVM的内存限制

JVM有2个GC线程
第一个线程负责回收Heap的Young区
第二个线程在Heap不足时,遍历Heap,将Young 区升级为Older区

Older区的大小等于-Xmx减去-Xmn,不能将-Xms的值设的过大,因为第二个线程被迫运行会降低JVM的性能。
为什么一些程序频繁发生GC?

有如下原因:
1.程序内调用了System.gc()或Runtime.gc()。
2.一些中间件软件调用自己的GC方法,此时需要设置参数禁止这些GC。
3.Java的Heap太小,一般默认的Heap值都很小。
4.频繁实例化对象,Release对象 此时尽量保存并重用对象,例如使用StringBuffer()和String()。

如果你发现每次GC后,Heap的剩余空间会是总空间的50%,这表示你的Heap处于健康状态,许多Server端的Java程序每次GC后最好能有65%的剩余空间

经验之谈:

1.Server端JVM最好将-Xms和-Xmx设为相同值。为了优化GC,最好让-Xmn值约等于-Xmx的1/3。
2.一个GUI程序最好是每10到20秒间运行一次GC,每次在半秒之内完成。

注意:

1.增加Heap的大小虽然会降低GC的频率,但也增加了每次GC的时间。并且GC运行时,所有的用户线程将暂停,也就是GC期间,Java应用程序不做任何工作。
2.Heap大小并不决定进程的内存使用量。进程的内存使用量要大于-Xmx定义的值,因为Java为其他任务分配内存,例如每个线程的Stack等。

Stack的设定
每个线程都有他自己的Stack。

-Xss
每个线程的Stack大小

Stack的大小限制着线程的数量。如果Stack过大就好导致内存溢漏。-Xss参数决定Stack大小,例如-Xss1024K。如果Stack太小,也会导致Stack溢漏。

硬件环境

硬件环境也影响GC的效率,例如机器的种类,内存,swap空间,和CPU的数量。
如果你的程序需要频繁创建很多transient对象,会导致JVM频繁GC。这种情况你可以增加机器的内存,来减少Swap空间的使用。

4种GC

1、第一种为单线程GC,也是默认的GC,该GC适用于单CPU机器。
2、第二种为Throughput GC,是多线程的GC,适用于多CPU,使用大量线程的程序。第二种GC与第一种GC相似,不同在于GC在收集Young区是多线程的,但在Old区和第一种一样,仍然采用单线程。-XX:+UseParallelGC参数启动该GC。
3、第三种为Concurrent Low Pause GC,类似于第一种,适用于多CPU,并要求缩短因GC造成程序停滞的时间。这种GC可以在Old区的回收同时,运行应用程序。-XX:+UseConcMarkSweepGC参数启动该GC。
4、第四种为Incremental Low Pause GC,适用于要求缩短因GC造成程序停滞的时间。这种GC可以在Young区回收的同时,回收一部分Old区对象。-Xincgc参数启动该GC。

单文件的JVM内存进行设置

默认的java虚拟机的大小比较小,在对大数据进行处理时java就会报错:java.lang.OutOfMemoryError。
设置jvm内存的方法,对于单独的.class,可以用下面的方法对Test运行时的jvm内存进行设置。
java -Xms64m -Xmx256m Test
-Xms是设置内存初始化的大小
-Xmx是设置最大能够使用内存的大小(最好不要超过物理内存大小)

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐
  • —软件人才免语言低担保 赴美带薪读研!—



你可能感兴趣的:(java,jvm,虚拟机)