数据挖掘中决策树C4.5预测算法实现(半成品,还要写规则后煎支及对非离散数据信息增益计算),下一篇博客讲原理
package org.struct.decisiontree; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.TreeSet; /** * @author Leon.Chen */ public class DecisionTreeBaseC4p5 { /** * root node */ private DecisionTreeNode root; /** * visableArray */ private boolean[] visable; private static final int NOT_FOUND = -1; private static final int DATA_START_LINE = 1; private Object[] trainingArray; private String[] columnHeaderArray; /** * forecast node index */ private int nodeIndex; /** * @param args */ @SuppressWarnings("boxing") public static void main(String[] args) { Object[] array = new Object[] { new String[] { "age", "income", "student", "credit_rating", "buys_computer" }, new String[] { "youth", "high", "no", "fair", "no" }, new String[] { "youth", "high", "no", "excellent", "no" }, new String[] { "middle_aged", "high", "no", "fair", "yes" }, new String[] { "senior", "medium", "no", "fair", "yes" }, new String[] { "senior", "low", "yes", "fair", "yes" }, new String[] { "senior", "low", "yes", "excellent", "no" }, new String[] { "middle_aged", "low", "yes", "excellent", "yes" }, new String[] { "youth", "medium", "no", "fair", "no" }, new String[] { "youth", "low", "yes", "fair", "yes" }, new String[] { "senior", "medium", "yes", "fair", "yes" }, new String[] { "youth", "medium", "yes", "excellent", "yes" }, new String[] { "middle_aged", "medium", "no", "excellent", "yes" }, new String[] { "middle_aged", "high", "yes", "fair", "yes" }, new String[] { "senior", "medium", "no", "excellent", "no" }, }; DecisionTreeBaseC4p5 tree = new DecisionTreeBaseC4p5(); tree.create(array, 4); System.out.println("===============END PRINT TREE==============="); System.out.println("===============DECISION RESULT==============="); //tree.forecast(printData, tree.root); } /** * @param printData * @param node */ public void forecast(String[] printData, DecisionTreeNode node) { int index = getColumnHeaderIndexByName(node.nodeName); if (index == NOT_FOUND) { System.out.println(node.nodeName); } DecisionTreeNode[] childs = node.childNodesArray; for (int i = 0; i < childs.length; i++) { if (childs[i] != null) { if (childs[i].parentArrtibute.equals(printData[index])) { forecast(printData, childs[i]); } } } } /** * @param array * @param index */ public void create(Object[] array, int index) { this.trainingArray = Arrays.copyOfRange(array, DATA_START_LINE, array.length); init(array, index); createDecisionTree(this.trainingArray); printDecisionTree(root); } /** * @param array * @return Object[] */ @SuppressWarnings("boxing") public Object[] getMaxGain(Object[] array) { Object[] result = new Object[2]; double gain = 0; int index = -1; for (int i = 0; i < visable.length; i++) { if (!visable[i]) { //TODO ID3 change to C4.5 double value = gainRatio(array, i, this.nodeIndex); System.out.println(value); if (gain < value) { gain = value; index = i; } } } result[0] = gain; result[1] = index; // TODO throws can't forecast this model exception if (index != -1) { visable[index] = true; } return result; } /** * @param array */ public void createDecisionTree(Object[] array) { Object[] maxgain = getMaxGain(array); if (root == null) { root = new DecisionTreeNode(); root.parentNode = null; root.parentArrtibute = null; root.arrtibutesArray = getArrtibutesArray(((Integer) maxgain[1]) .intValue()); root.nodeName = getColumnHeaderNameByIndex(((Integer) maxgain[1]) .intValue()); root.childNodesArray = new DecisionTreeNode[root.arrtibutesArray.length]; insertDecisionTree(array, root); } } /** * @param array * @param parentNode */ public void insertDecisionTree(Object[] array, DecisionTreeNode parentNode) { String[] arrtibutes = parentNode.arrtibutesArray; for (int i = 0; i < arrtibutes.length; i++) { Object[] pickArray = pickUpAndCreateSubArray(array, arrtibutes[i], getColumnHeaderIndexByName(parentNode.nodeName)); Object[] info = getMaxGain(pickArray); double gain = ((Double) info[0]).doubleValue(); if (gain != 0) { int index = ((Integer) info[1]).intValue(); DecisionTreeNode currentNode = new DecisionTreeNode(); currentNode.parentNode = parentNode; currentNode.parentArrtibute = arrtibutes[i]; currentNode.arrtibutesArray = getArrtibutesArray(index); currentNode.nodeName = getColumnHeaderNameByIndex(index); currentNode.childNodesArray = new DecisionTreeNode[currentNode.arrtibutesArray.length]; parentNode.childNodesArray[i] = currentNode; insertDecisionTree(pickArray, currentNode); } else { DecisionTreeNode leafNode = new DecisionTreeNode(); leafNode.parentNode = parentNode; leafNode.parentArrtibute = arrtibutes[i]; leafNode.arrtibutesArray = new String[0]; leafNode.nodeName = getLeafNodeName(pickArray,this.nodeIndex); leafNode.childNodesArray = new DecisionTreeNode[0]; parentNode.childNodesArray[i] = leafNode; } } } /** * @param node */ public void printDecisionTree(DecisionTreeNode node) { System.out.println(node.nodeName); DecisionTreeNode[] childs = node.childNodesArray; for (int i = 0; i < childs.length; i++) { if (childs[i] != null) { System.out.println(childs[i].parentArrtibute); printDecisionTree(childs[i]); } } } /** * init data * * @param dataArray * @param index */ public void init(Object[] dataArray, int index) { this.nodeIndex = index; // init data this.columnHeaderArray = (String[]) dataArray[0]; visable = new boolean[((String[]) dataArray[0]).length]; for (int i = 0; i < visable.length; i++) { if (i == index) { visable[i] = true; } else { visable[i] = false; } } } /** * @param array * @param arrtibute * @param index * @return Object[] */ public Object[] pickUpAndCreateSubArray(Object[] array, String arrtibute, int index) { List<String[]> list = new ArrayList<String[]>(); for (int i = 0; i < array.length; i++) { String[] strs = (String[]) array[i]; if (strs[index].equals(arrtibute)) { list.add(strs); } } return list.toArray(); } /** * gain(A) * * @param array * @param index * @return double */ public double gain(Object[] array, int index, int nodeIndex) { int[] counts = separateToSameValueArrays(array, nodeIndex); String[] arrtibutes = getArrtibutesArray(index); double infoD = infoD(array, counts); double infoaD = infoaD(array, index, nodeIndex, arrtibutes); return infoD - infoaD; } /** * @param array * @param nodeIndex * @return */ public int[] separateToSameValueArrays(Object[] array, int nodeIndex) { String[] arrti = getArrtibutesArray(nodeIndex); int[] counts = new int[arrti.length]; for (int i = 0; i < counts.length; i++) { counts[i] = 0; } for (int i = 0; i < array.length; i++) { String[] strs = (String[]) array[i]; for (int j = 0; j < arrti.length; j++) { if (strs[nodeIndex].equals(arrti[j])) { counts[j]++; } } } return counts; } /** * gainRatio = gain(A)/splitInfo(A) * * @param array * @param index * @param nodeIndex * @return */ public double gainRatio(Object[] array,int index,int nodeIndex){ double gain = gain(array,index,nodeIndex); int[] counts = separateToSameValueArrays(array, index); double splitInfo = splitInfoaD(array,counts); if(splitInfo != 0){ return gain/splitInfo; } return 0; } /** * infoD = -E(pi*log2 pi) * * @param array * @param counts * @return */ public double infoD(Object[] array, int[] counts) { double infoD = 0; for (int i = 0; i < counts.length; i++) { infoD += DecisionTreeUtil.info(counts[i], array.length); } return infoD; } /** * splitInfoaD = -E|Dj|/|D|*log2(|Dj|/|D|) * * @param array * @param counts * @return */ public double splitInfoaD(Object[] array, int[] counts) { return infoD(array, counts); } /** * infoaD = E(|Dj| / |D|) * info(Dj) * * @param array * @param index * @param arrtibutes * @return */ public double infoaD(Object[] array, int index, int nodeIndex, String[] arrtibutes) { double sv_total = 0; for (int i = 0; i < arrtibutes.length; i++) { sv_total += infoDj(array, index, nodeIndex, arrtibutes[i], array.length); } return sv_total; } /** * ((|Dj| / |D|) * Info(Dj)) * * @param array * @param index * @param arrtibute * @param allTotal * @return double */ public double infoDj(Object[] array, int index, int nodeIndex, String arrtibute, int allTotal) { String[] arrtibutes = getArrtibutesArray(nodeIndex); int[] counts = new int[arrtibutes.length]; for (int i = 0; i < counts.length; i++) { counts[i] = 0; } for (int i = 0; i < array.length; i++) { String[] strs = (String[]) array[i]; if (strs[index].equals(arrtibute)) { for (int k = 0; k < arrtibutes.length; k++) { if (strs[nodeIndex].equals(arrtibutes[k])) { counts[k]++; } } } } int total = 0; double infoDj = 0; for (int i = 0; i < counts.length; i++) { total += counts[i]; } for (int i = 0; i < counts.length; i++) { infoDj += DecisionTreeUtil.info(counts[i], total); } return DecisionTreeUtil.getPi(total, allTotal) * infoDj; } /** * @param index * @return String[] */ @SuppressWarnings("unchecked") public String[] getArrtibutesArray(int index) { TreeSet<String> set = new TreeSet<String>(new SequenceComparator()); for (int i = 0; i < trainingArray.length; i++) { String[] strs = (String[]) trainingArray[i]; set.add(strs[index]); } String[] result = new String[set.size()]; return set.toArray(result); } /** * @param index * @return String */ public String getColumnHeaderNameByIndex(int index) { for (int i = 0; i < columnHeaderArray.length; i++) { if (i == index) { return columnHeaderArray[i]; } } return null; } /** * @param array * @return String */ public String getLeafNodeName(Object[] array,int nodeIndex) { if (array != null && array.length > 0) { String[] strs = (String[]) array[0]; return strs[nodeIndex]; } return null; } /** * @param name * @return int */ public int getColumnHeaderIndexByName(String name) { for (int i = 0; i < columnHeaderArray.length; i++) { if (name.equals(columnHeaderArray[i])) { return i; } } return NOT_FOUND; } }
package org.struct.decisiontree; /** * @author Leon.Chen */ public class DecisionTreeNode { DecisionTreeNode parentNode; String parentArrtibute; String nodeName; String[] arrtibutesArray; DecisionTreeNode[] childNodesArray; }
package org.struct.decisiontree; /** * @author Leon.Chen */ public class DecisionTreeUtil { /** * entropy:Info(T)=(i=1...k)pi*log(2)pi * * @param x * @param total * @return double */ public static double info(int x, int total) { if (x == 0) { return 0; } double x_pi = getPi(x, total); return -(x_pi * logYBase2(x_pi)); } /** * log2y * * @param y * @return double */ public static double logYBase2(double y) { return Math.log(y) / Math.log(2); } /** * pi=|C(i,d)|/|D| * * @param x * @param total * @return double */ public static double getPi(int x, int total) { return x / (double) total; } }
package org.struct.decisiontree; import java.util.Comparator; /** * @author Leon.Chen * */ @SuppressWarnings("unchecked") public class SequenceComparator implements Comparator { public int compare(Object o1, Object o2) throws ClassCastException { String str1 = (String) o1; String str2 = (String) o2; return str1.compareTo(str2); } }