- HDFS与HBase有什么关系?
lucky_syq
hdfshbasehadoop
1、HDFS文件存储系统和HBase分布式数据库HDFS是Hadoop分布式文件系统。HBase的数据通常存储在HDFS上。HDFS为HBase提供了高可靠性的底层存储支持。Hbase是Hadoopdatabase,即Hadoop数据库。它是一个适合于非结构化数据存储的数据库,HBase基于列的而不是基于行的模式。
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- Hadoop、HDFS、Hive、Hbase区别及联系
静心观复
大数据hadoophdfshive
Hadoop、HDFS、Hive和HBase是大数据生态系统中的关键组件,它们都是由Apache软件基金会管理的开源项目。下面将深入解析它们之间的区别和联系。HadoopHadoop是一个开源的分布式计算框架,它允许用户在普通硬件上构建可靠、可伸缩的分布式系统。Hadoop通常指的是整个生态系统,包括HadoopCommon(共享库和工具)、HadoopDistributedFileSystem(
- Hadoop入门案例WordCount
码喵喵
hadoopmapreduce大数据
wordcount可以说是hadoop的入门案例,也是基础案例主要体现思想就是mapreduce核心思想原始文件为hadoop.txt,内容如下:hello,javahello,java,linux,hadoophadoop,java,linuxhello,java,linuxlinux,c,javac,php,java在整个文件中单词所出现的次数Hadoop思维:Mapreduce-----》M
- Hadoop入门案例
'Wu'
学习日常大数据hadoophdfs大数据
Hadoop的运行流程:客户端向HDFS请求文件存储或使用MapReduce计算。NameNode负责管理整个HDFS系统中的所有数据块和元数据信息;DataNode则实际存储和管理数据块。客户端通过NameNode查找需要访问或处理的文件所在的DataNode,并将操作请求发送到相应的DataNode上。当客户端上传一个新文件时(比如输入某些日志),它会被分成固定大小(默认64MB)并进行数据复
- 【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
MapReduce是一种适合处理大规模数据的分布式计算框架,其核心思想是将计算任务分解为Map(映射)和Reduce(归约)两个阶段。对文件中的数字进行排序,可以利用MapReduce的特性来实现。要使用MapReduce对文件中的数字进行排序,需要实现一个MapReduce作业,将数字作为键处理,利用Hadoop的默认排序机制对键进行排序。以下是实现步骤和示例代码:文章大纲题目一:有一个文件,每
- 头歌 当HBase遇上MapReduce
敲代码的苦13
头歌hbasemapreduce数据库
头歌当HBase遇上MapReduce第1关:HBase的MapReduce快速入门代码行:packagecom.processdata;importjava.io.IOException;importjava.util.List;importjava.util.Scanner;importorg.apache.hadoop.conf.Configuration;importorg.apache.
- MapReduce01:基本原理和wordCount代码实现
冬至喵喵
大数据mapreduce
本篇文章中,笔者记录了自己对于MapReduce的肤浅理解,参考资料主要包括《大数据Hadoop3.X分布式处理实战》和网络视频课程。下文介绍了MapReduce的基本概念、运行逻辑以及在wordCount代码示例。一、MapReduce概述1.概述google为解决其搜索引擎中的大规模网页数据的并行化处理问题,设计了MapReduce,在发明MapReduce之后首先用其重新改写了搜索引擎中we
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- 输入hadoop version时,解决Cannot execute /home/hadoop/libexec/hadoop-config.sh.的方法
有奇妙能力吗
ubuntuhadoophdfslinux大数据分布式
在ubuntu用hadoopversion遇到了一个错误:Cannotexecute/home/hadoop/hadoop2.8/libexec/hadoop-config.sh.解决方法:在/etc/profile中找到了这个HADOOP_HOME全局变量,将其删除运行source/etc/profile输入vim.bashrc命令,在最后一行输入unsetHADOOP_HOMEsource.b
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- Hadoop WordCount 程序实现与执行指南
HadoopWordCount程序实现与执行指南下面是使用Python实现的HadoopWordCount程序,包含完整的Mapper和Reducer部分。这个程序可以在PyCharm中本地测试,也可以部署到远程Hadoop集群上运行。mapper.pyimportsys#从标准输入读取数据forlineinsys.stdin:#移除行首行尾的空白字符line=line.strip()#将行分割为
- centos 7+hadoop 2.7.3
mozhw
c/c++linu/unixjava
安装JDK版本:jdk-8u131-linux-x64.tar.gz需要先删除系统自带的openjdk先查找java再移除[hadoop@localhost~]$rpm-qa|grepjavajava-1.7.0-openjdk-1.7.0.111-2.6.7.8.el7.x86_64python-javapackages-3.4.1-11.el7.noarchtzdata-java-2016g-
- MapReduce概述
Tate小白
大数据学习mapreduce
1、MapReduce概述1.1MapReduce定义MapReduce是一个分布式运算程序的编程框架,是用户开发“Hadoop的数据分析应用”的核心框架。MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Reduc
- 【笔记-软考】大数据架构-Lambda与Kappa架构对比
我叫白小猿
软考软考架构大数据KappaLambda
Author:赵志乾Date:2024-07-28Declaration:AllRightReserved!!!1.简介大数据系统架构的设计思想很大程度受技术条件和思维模式的限制;Lambda架构在提出初期面向小范围业务,直接将成熟离线处理技术(Hadoop)和实时处理技术(Storm)相结合,用View模型将二者处理后得到的输出结果结合起来,在服务层进行统一后,再开放给上层服务,是相当可行且高效
- HDFS(Hadoop分布式文件系统)总结
Cachel wood
大数据开发hadoophdfs大数据散列表算法哈希算法spark
文章目录一、HDFS概述1.定义与定位2.核心特点二、HDFS架构核心组件1.NameNode(名称节点)2.DataNode(数据节点)3.Client(客户端)4.SecondaryNameNode(辅助名称节点)三、数据存储机制1.数据块(Block)设计2.复制策略(默认复制因子=3)3.数据完整性校验四、文件读写流程1.写入流程2.读取流程五、高可用性(HA)机制1.单点故障解决方案2.
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- Netty4.1 - TCP粘包拆包解决方案及案例代码
wwyh520
IO编程netty
Netty是目前业界最流行的NIO框架之一,它的健壮性、高性能、可定制和可扩展性在同类框架中都是首屈一指。它已经得到了成百上千的商业项目的验证,例如Hadoop的RPC框架Avro就使用了Netty作为底层通信框架,其他的业界主流RPC框架,例如:Dubbo、Google开源的gRPC、新浪微博开源的Motan、Twitter开源的finagle也使用Netty来构建高性能的异步通信能力。另外,阿
- Storm核心概念与实战详解
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2010年Hadoop项目开源后,Storm项目也随之走向人气爆棚。在如此火热的当下,给我们带来的好处不仅仅是增强对Hadoop平台的掌控能力,更重要的是让我们感受到了快速发展、海量数据处理能力、低延迟的优势。在这一系列文章中,我将深入浅出地介绍Storm项目,并从实际案例出发,带领大家全面理解Storm中的关键概念及其运作方式,让您轻松掌握Storm的高效率、
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
拾光师
大数据后端
Hadoop版本hadoop1.x版本由三部分组成Common(辅助工具)HDFS(数据存储)MapReduce(计算和资源调度)存在的问题JobTracker同时具备了资源管理和作业控制两个功能,成为了系统的最大瓶颈采用了master/slave结构,master存在单点问题,一旦master出现故障,会导致整个集群不可用采用了基于槽位的资源分配模型,将槽位分为了Mapslot和Reducesl
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
拾光师
大数据后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 《从零开始:Hadoop 3.3.0 全分布式环境搭建与运行详解(含自动化配置)》
李哈哈敲代码
学习经验分布式hadoop自动化大数据linux
Hadoop3.3.0全分布并环境搭建与运行部署详解一、准备工作1.1环境要求三台Linux主机,如node1、node2、node3配置推荐:内存大于4GB,CPU大于2核,磁盘空间大于40GB1.2软件列表JDK1.8(!!需要提前上传到software目录下,解压到server目录下)Hadoop3.3.01.3目录规划(注意在根目录下创建export)/export/server#安装目录
- Hadoop等大数据处理框架的Java API
扬子鳄008
Javahadoopjava大数据
Hadoop是一个非常流行的大数据处理框架,主要用于存储和处理大规模数据集。Hadoop主要有两个核心组件:HDFS(HadoopDistributedFileSystem)和MapReduce。此外,还有许多其他组件,如YARN(YetAnotherResourceNegotiator)、HBase、Hive等。下面详细介绍Hadoop及其相关组件的JavaAPI及其使用方法。HadoopHad
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb