pom.xml:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.heli</groupId> <artifactId>ElasticSearch</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>ElasticSearch</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <es.version>1.5.2</es.version> <lucene.maven.version>4.10.4</lucene.maven.version> </properties> <dependencies> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>${es.version}</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.8.2</version> <scope>test</scope> </dependency> </dependencies> </project>
用户实体:
package com.heli.es; public class User { private long id;// id private String name;// 姓名 private double lat;// 纬度 private double lon;// 经度 private double[] location;// hashcode public User(long id, String name, double lat, double lon) { super(); this.id = id; this.name = name; this.lat = lat; this.lon = lon; } public long getId() { return id; } public void setId(long id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public double getLat() { return lat; } public void setLat(double lat) { this.lat = lat; } public double getLon() { return lon; } public void setLon(double lon) { this.lon = lon; } public double[] getLocation() { return location; } public void setLocation(double[] location) { this.location = location; } }
测试类:
package com.heli.es; import static org.elasticsearch.common.xcontent.XContentFactory.jsonBuilder; import static org.elasticsearch.index.query.FilterBuilders.geoDistanceRangeFilter; import java.io.IOException; import java.math.BigDecimal; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.Random; import org.elasticsearch.action.admin.indices.mapping.put.PutMappingRequest; import org.elasticsearch.action.admin.indices.mapping.put.PutMappingResponse; import org.elasticsearch.action.bulk.BulkRequestBuilder; import org.elasticsearch.action.bulk.BulkResponse; import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.action.search.SearchRequestBuilder; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.Client; import org.elasticsearch.client.Requests; import org.elasticsearch.client.transport.TransportClient; import org.elasticsearch.common.geo.GeoDistance; import org.elasticsearch.common.transport.InetSocketTransportAddress; import org.elasticsearch.common.unit.DistanceUnit; import org.elasticsearch.common.xcontent.XContentBuilder; import org.elasticsearch.common.xcontent.XContentFactory; import org.elasticsearch.index.query.FilterBuilder; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.sort.GeoDistanceSortBuilder; import org.elasticsearch.search.sort.SortBuilders; import org.elasticsearch.search.sort.SortOrder; /** * 实现附近的人功能,最大限额1000人,1米到100米范围内的人 */ public class ES4 { // 创建索引 public static void createIndex(String indexName, String indexType) throws IOException { Client esClient = new TransportClient().addTransportAddress(new InetSocketTransportAddress("127.0.0.1", 9300)); // 创建Mapping XContentBuilder mapping = createMapping(indexType); System.out.println("mapping:" + mapping.string()); // 创建一个空索引 esClient.admin().indices().prepareCreate(indexName).execute().actionGet(); PutMappingRequest putMapping = Requests.putMappingRequest(indexName).type(indexType).source(mapping); PutMappingResponse response = esClient.admin().indices().putMapping(putMapping).actionGet(); if (!response.isAcknowledged()) { System.out.println("Could not define mapping for type [" + indexName + "]/[" + indexType + "]."); } else { System.out.println("Mapping definition for [" + indexName + "]/[" + indexType + "] succesfully created."); } } // 创建mapping public static XContentBuilder createMapping(String indexType) { XContentBuilder mapping = null; try { mapping = jsonBuilder().startObject() // 索引库名(类似数据库中的表) .startObject(indexType).startObject("properties") // ID .startObject("id").field("type", "long").endObject() // 姓名 .startObject("name").field("type", "string").endObject() // 位置 .startObject("location").field("type", "geo_point").endObject() .endObject().endObject().endObject(); } catch (IOException e) { e.printStackTrace(); } return mapping; } // 添加数据 public static Integer addIndexData100000(String indexName, String indexType) { Client client = new TransportClient().addTransportAddress(new InetSocketTransportAddress("127.0.0.1", 9300)); List<String> cityList = new ArrayList<String>(); double lat = 39.929986; double lon = 116.395645; for (int i = 0; i < 100000; i++) { double max = 0.00001; double min = 0.000001; Random random = new Random(); double s = random.nextDouble() % (max - min + 1) + max; DecimalFormat df = new DecimalFormat("######0.000000"); // System.out.println(s); String lons = df.format(s + lon); String lats = df.format(s + lat); Double dlon = Double.valueOf(lons); Double dlat = Double.valueOf(lats); User city1 = new User(i, "郭德纲"+i, dlat, dlon); cityList.add(obj2JsonUserData(city1)); } // 创建索引库 List<IndexRequest> requests = new ArrayList<IndexRequest>(); for (int i = 0; i < cityList.size(); i++) { IndexRequest request = client.prepareIndex(indexName, indexType).setSource(cityList.get(i)).request(); requests.add(request); } // 批量创建索引 BulkRequestBuilder bulkRequest = client.prepareBulk(); for (IndexRequest request : requests) { bulkRequest.add(request); } BulkResponse bulkResponse = bulkRequest.execute().actionGet(); if (bulkResponse.hasFailures()) { System.out.println("批量创建索引错误!"); } return bulkRequest.numberOfActions(); } public static String obj2JsonUserData(User user) { String jsonData = null; try { // 使用XContentBuilder创建json数据 XContentBuilder jsonBuild = XContentFactory.jsonBuilder(); jsonBuild.startObject().field("id", user.getId()).field("name", user.getName()).startArray("location").value(user.getLat()).value(user.getLon()).endArray() .endObject(); jsonData = jsonBuild.string(); System.out.println(jsonData); } catch (IOException e) { e.printStackTrace(); } return jsonData; } // 获取附近的人 public static void testGetNearbyPeople(Client client, String index, String type, double lat, double lon) { SearchRequestBuilder srb = client.prepareSearch(index).setTypes(type); srb.setFrom(0).setSize(1000);//1000人 // lon, lat位于谦的坐标,查询距离于谦1米到1000米 FilterBuilder builder = geoDistanceRangeFilter("location").point(lon, lat).from("1m").to("100m").optimizeBbox("memory").geoDistance(GeoDistance.PLANE); srb.setPostFilter(builder); // 获取距离多少公里 这个才是获取点与点之间的距离的 GeoDistanceSortBuilder sort = SortBuilders.geoDistanceSort("location"); sort.unit(DistanceUnit.METERS); sort.order(SortOrder.ASC); sort.point(lon, lat); srb.addSort(sort); SearchResponse searchResponse = srb.execute().actionGet(); SearchHits hits = searchResponse.getHits(); SearchHit[] searchHists = hits.getHits(); // 搜索耗时 Float usetime = searchResponse.getTookInMillis() / 1000f; System.out.println("于谦附近的人(" + hits.getTotalHits() + "个),耗时("+usetime+"秒):"); for (SearchHit hit : searchHists) { String name = (String) hit.getSource().get("name"); List<Double> location = (List<Double>)hit.getSource().get("location"); // 获取距离值,并保留两位小数点 BigDecimal geoDis = new BigDecimal((Double) hit.getSortValues()[0]); Map<String, Object> hitMap = hit.getSource(); // 在创建MAPPING的时候,属性名的不可为geoDistance。 hitMap.put("geoDistance", geoDis.setScale(0, BigDecimal.ROUND_HALF_DOWN)); System.out.println(name+"的坐标:"+location + "他距离于谦" + hit.getSource().get("geoDistance") + DistanceUnit.METERS.toString()); } } public static void main(String[] args) throws IOException { Client client = new TransportClient().addTransportAddress(new InetSocketTransportAddress("127.0.0.1", 9300)); String index = "es"; String type = "people"; //createIndex(index, type); //addIndexData100000(index, type); double lat = 39.929986; double lon = 116.395645; long start = System.currentTimeMillis(); //query("郭", index, type); testGetNearbyPeople(client, index, type, lat, lon); long end = System.currentTimeMillis(); System.out.println((end - start) + "毫秒"); //client.close();// 1.5.2用完不用关闭 } }
查询结果:
于谦附近的人(69个),耗时(0.016秒): 郭德纲17413的坐标:[39.929999, 116.395658]他距离于谦2m 郭德纲79407的坐标:[39.930006, 116.395665]他距离于谦2m 郭德纲26009的坐标:[39.93003, 116.395689]他距离于谦5m 郭德纲90577的坐标:[39.930041, 116.3957]他距离于谦7m 郭德纲4479的坐标:[39.930049, 116.395708]他距离于谦8m 郭德纲59538的坐标:[39.930068, 116.395727]他距离于谦10m 郭德纲56225的坐标:[39.930072, 116.395731]他距离于谦10m 郭德纲78623的坐标:[39.930075, 116.395734]他距离于谦11m 郭德纲21402的坐标:[39.930092, 116.395751]他距离于谦13m 郭德纲98117的坐标:[39.930098, 116.395757]他距离于谦14m 郭德纲92957的坐标:[39.9301, 116.395759]他距离于谦14m 郭德纲75291的坐标:[39.930101, 116.39576]他距离于谦14m 郭德纲84154的坐标:[39.930121, 116.39578]他距离于谦16m 郭德纲73369的坐标:[39.93016, 116.395819]他距离于谦21m 郭德纲38979的坐标:[39.930174, 116.395833]他距离于谦23m 郭德纲78569的坐标:[39.930193, 116.395852]他距离于谦25m 郭德纲15100的坐标:[39.930207, 116.395866]他距离于谦27m 郭德纲3864的坐标:[39.930218, 116.395877]他距离于谦28m 郭德纲66276的坐标:[39.930237, 116.395896]他距离于谦30m 郭德纲90141的坐标:[39.930243, 116.395902]他距离于谦31m 郭德纲29377的坐标:[39.930249, 116.395908]他距离于谦32m 郭德纲54727的坐标:[39.930253, 116.395912]他距离于谦32m 郭德纲10456的坐标:[39.930292, 116.395951]他距离于谦37m 郭德纲48968的坐标:[39.930298, 116.395957]他距离于谦38m 郭德纲20625的坐标:[39.930305, 116.395964]他距离于谦39m 郭德纲58066的坐标:[39.930307, 116.395966]他距离于谦39m 郭德纲76596的坐标:[39.930308, 116.395967]他距离于谦39m 郭德纲73185的坐标:[39.930323, 116.395982]他距离于谦41m 郭德纲26093的坐标:[39.930331, 116.39599]他距离于谦42m 郭德纲76719的坐标:[39.930331, 116.39599]他距离于谦42m 郭德纲27200的坐标:[39.930337, 116.395996]他距离于谦43m 郭德纲48983的坐标:[39.930337, 116.395996]他距离于谦43m 郭德纲21808的坐标:[39.930356, 116.396015]他距离于谦45m 郭德纲70386的坐标:[39.930356, 116.396015]他距离于谦45m 郭德纲56140的坐标:[39.93036, 116.396019]他距离于谦45m 郭德纲19567的坐标:[39.930365, 116.396024]他距离于谦46m 郭德纲9499的坐标:[39.930366, 116.396025]他距离于谦46m 郭德纲11682的坐标:[39.930381, 116.39604]他距离于谦48m 郭德纲19372的坐标:[39.930382, 116.396041]他距离于谦48m 郭德纲12508的坐标:[39.930383, 116.396042]他距离于谦48m 郭德纲56554的坐标:[39.930385, 116.396044]他距离于谦48m 郭德纲79324的坐标:[39.930389, 116.396048]他距离于谦49m 郭德纲30910的坐标:[39.930394, 116.396053]他距离于谦50m 郭德纲45095的坐标:[39.930412, 116.396071]他距离于谦52m 郭德纲73533的坐标:[39.930422, 116.396081]他距离于谦53m 郭德纲46509的坐标:[39.930422, 116.396081]他距离于谦53m 郭德纲81262的坐标:[39.93044, 116.396099]他距离于谦55m 郭德纲30077的坐标:[39.930448, 116.396107]他距离于谦56m 郭德纲61049的坐标:[39.930456, 116.396115]他距离于谦57m 郭德纲16607的坐标:[39.930458, 116.396117]他距离于谦57m 郭德纲50464的坐标:[39.930467, 116.396126]他距离于谦58m 郭德纲7272的坐标:[39.930468, 116.396127]他距离于谦59m 郭德纲82133的坐标:[39.93047, 116.396129]他距离于谦59m 郭德纲46350的坐标:[39.930472, 116.396131]他距离于谦59m 郭德纲40185的坐标:[39.930502, 116.396161]他距离于谦63m 郭德纲28020的坐标:[39.930515, 116.396174]他距离于谦64m 郭德纲75873的坐标:[39.93052, 116.396179]他距离于谦65m 郭德纲83959的坐标:[39.930527, 116.396186]他距离于谦66m 郭德纲5175的坐标:[39.930529, 116.396188]他距离于谦66m 郭德纲15511的坐标:[39.930531, 116.39619]他距离于谦66m 郭德纲61721的坐标:[39.930535, 116.396194]他距离于谦67m 郭德纲54860的坐标:[39.930549, 116.396208]他距离于谦68m 郭德纲38391的坐标:[39.93055, 116.396209]他距离于谦69m 郭德纲5603的坐标:[39.930555, 116.396214]他距离于谦69m 郭德纲70588的坐标:[39.930579, 116.396238]他距离于谦72m 郭德纲12256的坐标:[39.930583, 116.396242]他距离于谦73m 郭德纲93219的坐标:[39.930598, 116.396257]他距离于谦74m 郭德纲80353的坐标:[39.930607, 116.396266]他距离于谦75m 郭德纲19737的坐标:[39.930617, 116.396276]他距离于谦77m 82毫秒
注:server 和client版本使用的是1.5.2,如果server版本用elasticsearch-rtf-master,sort的时候总是报:
Exception in thread "main" org.elasticsearch.action.search.SearchPhaseExecutionException: Failed to execute phase [query], all shards failed; shardFailures {[alee59cPQNuzRP4go6-5vw][testes][4]: SearchParseException[[testes][4]: from[-1],size[-1]: Parse Failure [Failed to parse source [{"post_filter":{"geo_distance_range":{"location":"wx4g0th9p0gk","from":"1km","to":"2000km","include_lower":true,"include_upper":true,"distance_type":"arc","optimize_bbox":"memory"}},"sort":[{"_geo_distance":{"location":[{"lat":39.929986,"lon":116.395645}],"unit":"km","distance_type":"arc"}}]}]]]; nested: ElasticsearchParseException[Numeric value expected]; }{[alee59cPQNuzRP4go6-5vw][testes][0]: SearchParseException[[testes][0]: from[-1],size[-1]: Parse Failure [Failed to parse source [{"post_filter":{"geo_distance_range":{"location":"wx4g0th9p0gk","from":"1km","to":"2000km","include_lower":true,"include_upper":true,"distance_type":"arc","optimize_bbox":"memory"}},"sort":[{"_geo_distance":{"location":[{"lat":39.929986,"lon":116.395645}],"unit":"km","distance_type":"arc"}}]}]]]; nested: ElasticsearchParseException[Numeric value expected]; }{[alee59cPQNuzRP4go6-5vw][testes][1]: SearchParseException[[testes][1]: from[-1],size[-1]: Parse Failure [Failed to parse source [{"post_filter":{"geo_distance_range":{"location":"wx4g0th9p0gk","from":"1km","to":"2000km","include_lower":true,"include_upper":true,"distance_type":"arc","optimize_bbox":"memory"}},"sort":[{"_geo_distance":{"location":[{"lat":39.929986,"lon":116.395645}],"unit":"km","distance_type":"arc"}}]}]]]; nested: ElasticsearchParseException[Numeric value expected]; }{[alee59cPQNuzRP4go6-5vw][testes][2]: SearchParseException[[testes][2]: from[-1],size[-1]: Parse Failure [Failed to parse source [{"post_filter":{"geo_distance_range":{"location":"wx4g0th9p0gk","from":"1km","to":"2000km","include_lower":true,"include_upper":true,"distance_type":"arc","optimize_bbox":"memory"}},"sort":[{"_geo_distance":{"location":[{"lat":39.929986,"lon":116.395645}],"unit":"km","distance_type":"arc"}}]}]]]; nested: ElasticsearchParseException[Numeric value expected]; }{[alee59cPQNuzRP4go6-5vw][testes][3]: SearchParseException[[testes][3]: from[-1],size[-1]: Parse Failure [Failed to parse source [{"post_filter":{"geo_distance_range":{"location":"wx4g0th9p0gk","from":"1km","to":"2000km","include_lower":true,"include_upper":true,"distance_type":"arc","optimize_bbox":"memory"}},"sort":[{"_geo_distance":{"location":[{"lat":39.929986,"lon":116.395645}],"unit":"km","distance_type":"arc"}}]}]]]; nested: ElasticsearchParseException[Numeric value expected]; }
换成1.5.2结果就好了,还有
.point(lon, lat)
必须经度在前,纬度在后,不然查询为空,跟一朋友聊说这个可能是个bug
另外查询速度太慢,应该哪个地方配置的问题,经过试验,原来创建client消耗了1秒左右,10万个基数查询82毫秒,非常快