Android4.4的init进程
侯 亮
前些日子需要在科室内做关于Android系统启动流程的培训。为此,我在几年前的技术手记的基础上,重新改了一份培训文档。在重新整理文档期间,我也重读了一下Android 4.4的相关代码,发现还有一些东西是我以前一直没重视过的,所以打算写下来总结一二。
我以前之所以没有把关于Android系统启动方面的手记整理成博文,主要是因为网上已经有许多类似的文章了,再说一遍好像也没什么意思。但这次的培训既然已迫使我重整了一份文档,那么倒也不妨贴出来供大家参考。文中的某些细节是我最近新补充的内容,这样或许能和网上其他文章有所区别吧。
我们先概述一下Android的init进程。init是Linux系统中,用户空间的第一个进程。它负责创建系统中最关键的几个子进程,尤其是zygote。另外,init还提供了property service(属性服务),类似于windows系统的注册表服务。有关属性服务的细节,大家可参考我写的《Android Property机制》一文,本文就不多说了。
在Android系统中,会有个init.rc脚本。Init进程一启动就会读取并解析这个脚本文件,把其中的元素整理成自己的数据结构(链表)。具体情况可参考system\core\init\init.c文件,它的main()函数会先调用init_parse_config_file(“/init.rc”)来解析init.rc脚本,分析出应该执行的语义,并且把脚本中描述的action和service信息分别组织成双向链表,然后执行之。示意图如下:
Init.rc脚本使用的是一种初始化语言,其中包含了4类声明:
1)Action
2)Command
3)Service
4)Option
该语言规定,Action和Service是以一种“小节”(Section)的形式出现的,其中每个Action小节可以含有若干Command,而每个Service小节可以含有若干Option。小节只有起始标记,却没有明确的结束标记,也就是说,是用“后一个小节”的起始来结束“前一个小节”的。
脚本中的Action大体上表示一个“行动”,它用一系列Command共同完成该“行动”。Action需要有一个触发器(trigger)来触发它,一旦满足了触发条件,这个Action就会被加到执行队列的末尾。Action的形式如下:
on <trigger> <command1> <command2> ......
Service表示一个服务程序,会在初始化时启动。因为init.rc脚本中描述的服务往往都是核心服务,所以(基本上所有的)服务会在退出时自动重启。Service的形式如下:
service <name> <pathname> [<arguments>]* <option> <option> ......
Init.rc中的Service截选如下:
service servicemanager /system/bin/servicemanager class core user system group system critical onrestart restart healthd onrestart restart zygote onrestart restart media onrestart restart surfaceflinger onrestart restart drm service vold /system/bin/vold class core socket vold stream 0660 root mount ioprio be 2 service netd /system/bin/netd class main socket netd stream 0660 root system socket dnsproxyd stream 0660 root inet socket mdns stream 0660 root system
请大家留心service里的class选项,比如上面的class core和class main。它表示该service是属于哪种类型的服务。在后文的阐述boot子阶段时,会用到这个概念。
其实,除了Action和Service,Init.rc中还有一种小节,就是Import小节。该小节表达的意思有点儿像java中的import,也就是说,Init.rc中还可以导入其他.rc脚本文件的内容。在早期的Android中,好像并不支持import语句,不过至少从Android4.0开始,添加了import语句。至于import最早出现在哪个版本,我没有考证过。import句子截选如下:
import /init.environ.rc import /init.usb.rc import /init.${ro.hardware}.rc import /init.trace.rc
在init进程的main()函数里,会调用init_parse_config_file("/init.rc")一句来解析init.rc脚本。init_parse_config_file()的代码如下:
【system/core/init/Init_parser.c】
int init_parse_config_file(const char *fn) { char *data; data = read_file(fn, 0); if (!data) return -1; parse_config(fn, data); DUMP(); return 0; }
先用read_file()把脚本内容读入一块内存,而后调用parse_config()解析这块内存。
parse_config()的代码截选如下:
static void parse_config(const char *fn, char *s) { . . . . . . for (;;) { switch (next_token(&state)) { . . . . . . case T_NEWLINE: // 遇到折行 state.line++; if (nargs) { int kw = lookup_keyword(args[0]); if (kw_is(kw, SECTION)) { state.parse_line(&state, 0, 0); // 不同section的parse_line也不同噢 parse_new_section(&state, kw, nargs, args); } else { state.parse_line(&state, nargs, args); } nargs = 0; } break; . . . . . . . . . . . . }
它在逐行分析init.rc脚本,判断每一行的第一个参数是什么类型的,如果是action或service类型的,就表示要创建一个新的section节点了,此时它会设置一下解析后续行的解析函数,也就是给state->parse_line赋值啦。针对service类型,解析后续行的函数是parse_line_service(),而针对action类型,解析后续行的函数则是parse_line_action()。
这么看来,parse_config()里有3个地方值得我们注意:
lookup_keyword()的定义截选如下:
【system/core/init/Init_parser.c】
int lookup_keyword(const char *s) { switch (*s++) { case 'c': if (!strcmp(s, "opy")) return K_copy; if (!strcmp(s, "apability")) return K_capability; if (!strcmp(s, "hdir")) return K_chdir; if (!strcmp(s, "hroot")) return K_chroot; if (!strcmp(s, "lass")) return K_class; if (!strcmp(s, "lass_start")) return K_class_start; if (!strcmp(s, "lass_stop")) return K_class_stop; if (!strcmp(s, "lass_reset")) return K_class_reset; if (!strcmp(s, "onsole")) return K_console; if (!strcmp(s, "hown")) return K_chown; if (!strcmp(s, "hmod")) return K_chmod; if (!strcmp(s, "ritical")) return K_critical; break; case 'd': if (!strcmp(s, "isabled")) return K_disabled; if (!strcmp(s, "omainname")) return K_domainname; break; . . . . . . . . . . . .
kw_is()宏的定义如下:
#define kw_is(kw, type) (keyword_info[kw].flags & (type))
基本上是查表的过程,而lookup_keyword()返回的那些K_copy、K_capability值,其实就是表项的索引号。这张关键字表的技术细节如下。
在init_parser.c文件中有下面这样的代码:
【system/core/init/Init_parser.c】
#include "keywords.h" #define KEYWORD(symbol, flags, nargs, func) \ [ K_##symbol ] = { #symbol, func, nargs + 1, flags, }, struct { const char *name; int (*func)(int nargs, char **args); unsigned char nargs; unsigned char flags; } keyword_info[KEYWORD_COUNT] = { [ K_UNKNOWN ] = { "unknown", 0, 0, 0 }, #include "keywords.h" }; #undef KEYWORD
这里用到了一点儿小技巧,两次include了keywords.h头文件,其实keywords.h中会先定义一次KEYWORD宏,其主要目的是为了形成一个顺序排列的enum,而后就#undef KEYWORD了。接着上面代码中再次定义了KEYWORD宏,这次的主要目的是为了形成一个struct数组,即keyword_info数组。
keywords.h的部分截选如下:
【system/core/init/Keywords.h】
#ifndef KEYWORD int do_chroot(int nargs, char **args); int do_chdir(int nargs, char **args); int do_class_start(int nargs, char **args); . . . . . . . . . . . . #define __MAKE_KEYWORD_ENUM__ #define KEYWORD(symbol, flags, nargs, func) K_##symbol, enum { K_UNKNOWN, #endif KEYWORD(capability, OPTION, 0, 0) KEYWORD(chdir, COMMAND, 1, do_chdir) KEYWORD(chroot, COMMAND, 1, do_chroot) KEYWORD(class, OPTION, 0, 0) . . . . . . . . . . . . #ifdef __MAKE_KEYWORD_ENUM__ KEYWORD_COUNT, }; #undef __MAKE_KEYWORD_ENUM__ #undef KEYWORD #endif
其中的#define KEYWORD是第一次定义KEYWORD,我们比对一下这两次定义:
// 第一次 #define KEYWORD(symbol, flags, nargs, func) K_##symbol, // 第二次 #define KEYWORD(symbol, flags, nargs, func) \ [ K_##symbol ] = { #symbol, func, nargs + 1, flags, },
总之,最后形成了如下数组:
表中只有3个表项的flag是SECTION,表示这是个小节,我用黄色框表示。
一旦分析出某句脚本是以on或者service或者import开始,就说明一个新的小节要开始了。此时,会调用到parse_new_section(),该函数的代码如下:
void parse_new_section(struct parse_state *state, int kw, int nargs, char **args) { printf("[ %s %s ]\n", args[0], nargs > 1 ? args[1] : ""); switch(kw) { case K_service: state->context = parse_service(state, nargs, args); if (state->context) { state->parse_line = parse_line_service; return; } break; case K_on: state->context = parse_action(state, nargs, args); if (state->context) { state->parse_line = parse_line_action; return; } break; case K_import: parse_import(state, nargs, args); break; } state->parse_line = parse_line_no_op; }
很明显,解析的小节就是那三类:action小节(以on开头的),service小节和import小节。最核心的部分当然是service小节和action小节,具体解析的地方在上面代码中的parse_service()和parse_action()函数里。至于import小节,parse_import()函数只是把脚本中的所有import语句先汇总成一个链表,记入state结构中,待回到parse_config()后再做处理。
static void *parse_service(struct parse_state *state, int nargs, char **args) { struct service *svc; . . . . . . svc = service_find_by_name(args[1]); if (svc) { parse_error(state, "ignored duplicate definition of service '%s'\n", args[1]); return 0; } nargs -= 2; svc = calloc(1, sizeof(*svc) + sizeof(char*) * nargs); if (!svc) { parse_error(state, "out of memory\n"); return 0; } svc->name = args[1]; svc->classname = "default"; memcpy(svc->args, args + 2, sizeof(char*) * nargs); svc->args[nargs] = 0; svc->nargs = nargs; svc->onrestart.name = "onrestart"; list_init(&svc->onrestart.commands); list_add_tail(&service_list, &svc->slist); return svc; }
解析service段时,会用calloc()申请一个service节点,填入service名等信息,并连入service_list总表中。注意,此时该service节点的onrestart.commands部分还是个空链表,因为我们还没有分析该service的后续脚本行呢。
static void parse_line_service(struct parse_state *state, int nargs, char **args) { struct service *svc = state->context; struct command *cmd; . . . . . . kw = lookup_keyword(args[0]); // 解析具体的service option也是要查关键字表的 switch (kw) { case K_capability: break; case K_class: if (nargs != 2) { parse_error(state, "class option requires a classname\n"); } else { svc->classname = args[1]; } break; case K_console: svc->flags |= SVC_CONSOLE; break; case K_disabled: . . . . . . . . . . . .
service的各个option会影响service节点的不同域,比如flags域、classname域、onrestart域等等。比较麻烦的是onrestart域,因为它本身又是个action节点,可携带若干个子command。
下面是service中常见的option:
1)K_capability
2)K_class
3)K_console
4)K_disabled
5)K_ioprio
6)K_group
7)K_user
8)K_keycodes
9)K_oneshot
10)K_onrestart
11)K_critical
12)K_setenv
13)K_socket
14)K_seclabel
在service小节解析完毕后,我们应该能得到类似下图这样的service节点:
static void *parse_action(struct parse_state *state, int nargs, char **args) { struct action *act; . . . . . . act = calloc(1, sizeof(*act)); act->name = args[1]; list_init(&act->commands); list_init(&act->qlist); list_add_tail(&action_list, &act->alist); return act; }
对于action小节而言,我们指定了不同的解析后续行的函数,也就是parse_line_action()。该函数的代码截选如下:
static void parse_line_action(struct parse_state* state, int nargs, char **args) { struct command *cmd; struct action *act = state->context; . . . . . . kw = lookup_keyword(args[0]); // 解析具体的action command也是要查关键字表的 if (!kw_is(kw, COMMAND)) { parse_error(state, "invalid command '%s'\n", args[0]); return; } n = kw_nargs(kw); if (nargs < n) { parse_error(state, "%s requires %d %s\n", args[0], n - 1, n > 2 ? "arguments" : "argument"); return; } cmd = malloc(sizeof(*cmd) + sizeof(char*) * nargs); cmd->func = kw_func(kw); cmd->nargs = nargs; memcpy(cmd->args, args, sizeof(char*) * nargs); list_add_tail(&act->commands, &cmd->clist); }
既然action的后续行可以包含多条command,那么parse_line_action()就必须先确定出当前分析的是什么command,这一点和parse_line_service()是一致的,都是通过调用lookup_keyword()来查询关键字的。另外,command子行的所有参数其实已被记入传进来的args参数,现在这些参数会记入command节点的args域中,而且这个command节点会链入action节点的commands链表尾部。
在action小节解析完毕后,我们应该能得到类似下图这样的action节点:
我们画了一张关于parse_config()的调用关系图,如下:
init_parse_config_file()函数会将Init.rc脚本解析成两个双向链表,对应的表头分别是service_list和action_list。双向链表示意图如下:
int main(int argc, char **argv) { . . . . . . . . . . . . init_parse_config_file("/init.rc"); // 内部将脚本内容转换成action链表了 action_for_each_trigger("early-init", action_add_queue_tail); queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done"); queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); queue_builtin_action(keychord_init_action, "keychord_init"); queue_builtin_action(console_init_action, "console_init"); /* execute all the boot actions to get us started */ action_for_each_trigger("init", action_add_queue_tail); . . . . . . . . . . . . }
首先,init_parse_config_file()已经把init.rc脚本里的内容转换成action链表了,接着代码运行到action_for_each_trigger(“early-init”...)一句,这一句会把action_list列表中匹配的action节点,连入action_queue队列。
init进程希望把系统初始化过程分割成若干“子阶段”,action_for_each_trigger()的意思就是“触发某个子阶段里的所有action”。在早期的Android中,大概就只有4、5个子阶段,现在随着Android的不断升级,子阶段也变得越来越多了。
action_for_each_trigger()的代码如下:
void action_for_each_trigger(const char *trigger, void (*func)(struct action *act)) { struct listnode *node; struct action *act; list_for_each(node, &action_list) { act = node_to_item(node, struct action, alist); if (!strcmp(act->name, trigger)) { func(act); // 只要匹配,就回调func } } }
可以看到是在遍历action_list链表,找寻所有“action名”和“参数trigger”匹配的节点,并回调“参数func所指的回调函数”。在前面的代码中,回调函数就是action_add_queue_tail()。
void action_add_queue_tail(struct action *act) { if (list_empty(&act->qlist)) { list_add_tail(&action_queue, &act->qlist); } }
嗯,这里又出现了个action_queue队列!它和action_list列表有什么关系?
其实很简单,action_list可以被理解成一个来自init.rc的“草稿列表”,列表中的节点顺序基本上和init.rc脚本里编写section时的顺序一致,而这个顺序不一定就是合适的“运行顺序”,所以我们需要另一个按我们的要求依次串接的队列,那就是action_queue队列。另外,有些新的action并没有体现在init.rc脚本里,而是写在具体代码里的,这些action可以被称为“内建action”,我们可以通过调用queue_builtin_action()将“内建action”添加进action_list列表和action_queue队列中。
queue_builtin_action()的代码如下:
void queue_builtin_action(int (*func)(int nargs, char **args), char *name) { struct action *act; struct command *cmd; act = calloc(1, sizeof(*act)); act->name = name; list_init(&act->commands); list_init(&act->qlist); cmd = calloc(1, sizeof(*cmd)); cmd->func = func; cmd->args[0] = name; list_add_tail(&act->commands, &cmd->clist); list_add_tail(&action_list, &act->alist); action_add_queue_tail(act); }
init进程里主要分割的“子阶段”如下图所示:
桔色方框表示的子阶段,是比较重要的阶段。
我们先看early-init子阶段,这部分在init.rc里是这样表达的:
on early-init # Set init and its forked children's oom_adj. write /proc/1/oom_adj -16 # Set the security context for the init process. # This should occur before anything else (e.g. ueventd) is started. setcon u:r:init:s0 start ueventd # create mountpoints mkdir /mnt 0775 root system
这个action包含4条command,分别是write、setcon、start和mkdir。不同command对应的func回调函数也是不同的,具体对应什么,可以查看Keywords.h。
【system/core/init/Keywords.h】
KEYWORD(service, SECTION, 0, 0) KEYWORD(setcon, COMMAND, 1, do_setcon) KEYWORD(setenforce, COMMAND, 1, do_setenforce) KEYWORD(setenv, OPTION, 2, 0) KEYWORD(setkey, COMMAND, 0, do_setkey) KEYWORD(setprop, COMMAND, 2, do_setprop) KEYWORD(setrlimit, COMMAND, 3, do_setrlimit) KEYWORD(setsebool, COMMAND, 2, do_setsebool) KEYWORD(socket, OPTION, 0, 0) KEYWORD(start, COMMAND, 1, do_start) KEYWORD(stop, COMMAND, 1, do_stop) KEYWORD(swapon_all, COMMAND, 1, do_swapon_all) KEYWORD(trigger, COMMAND, 1, do_trigger) KEYWORD(symlink, COMMAND, 1, do_symlink) KEYWORD(sysclktz, COMMAND, 1, do_sysclktz) KEYWORD(user, OPTION, 0, 0) KEYWORD(wait, COMMAND, 1, do_wait) KEYWORD(write, COMMAND, 2, do_write) KEYWORD(copy, COMMAND, 2, do_copy) KEYWORD(chown, COMMAND, 2, do_chown) KEYWORD(chmod, COMMAND, 2, do_chmod)
比如说start命令对应的回调函数就是do_start():
int do_start(int nargs, char **args) { struct service *svc; svc = service_find_by_name(args[1]); if (svc) { service_start(svc, NULL); } return 0; }
启动所指定的service。
boot部分在init.rc里是这样表达的:
on boot ifup lo hostname localhost domainname localdomain setrlimit 13 40 40 . . . . . . write /proc/sys/vm/overcommit_memory 1 write /proc/sys/vm/min_free_order_shift 4 chown root system /sys/module/lowmemorykiller/parameters/adj chmod 0664 /sys/module/lowmemorykiller/parameters/adj . . . . . . . . . . . . setprop net.tcp.default_init_rwnd 60 class_start core class_start main
请注意最后的两句,表示boot动作的最后,会自动先启动所有类型为“core”的服务,而后再启动所有类型为“main”的服务。我们在前文阐述init.rc脚本中的service写法时,特别让大家留意service的class选项,比如class core和class main,现在要用到这个概念了。
class_start命令对应的回调函数是do_class_start(),该函数的代码如下:
【system/core/init/Builtins.c】
int do_class_start(int nargs, char **args) { service_for_each_class(args[1], service_start_if_not_disabled); return 0; }
void service_for_each_class(const char *classname, void (*func)(struct service *svc)) { struct listnode *node; struct service *svc; list_for_each(node, &service_list) { svc = node_to_item(node, struct service, slist); if (!strcmp(svc->classname, classname)) { func(svc); // 回调service_start_if_not_disabled() } } }
其回调的func,就是service_start_if_not_disabled(),代码如下:
static void service_start_if_not_disabled(struct service *svc) { if (!(svc->flags & SVC_DISABLED)) { service_start(svc, NULL); } }
代码很简单,service_for_each_class()会遍历service_list链表,找到所有和classname匹配的service节点,如果这个节点没有被disabled的话,那么就启动其对应的服务。
boot子阶段先启动的“core”类型的服务有:
core类型的服务 | 对应的可执行文件 | 说明 |
ueventd | /sbin/ueventd | |
healthd | /sbin/healthd | |
console | /system/bin/sh | |
adbd | /sbin/adbd | |
servicemanager | /system/bin/servicemanager | 大名鼎鼎的service manager service服务,Android的核心之一。 |
vold | /system/bin/vold |
而后,boot子阶段启动的“main”类型的服务有:
main类型的服务 | 对应的可执行文件 | 说明 |
netd | /system/bin/netd | |
debuggerd | /system/bin/debuggerd | |
ril-daemon | /system/bin/rild | |
surfaceflinger | /system/bin/surfaceflinger | |
zygote | /system/bin/app_process | Android创建内部创建新进程的核心服务。 |
drm | /system/bin/drmserver | |
media | /system/bin/mediaserver | |
bootanim | /system/bin/bootanimation | |
installd | /system/bin/installd | |
flash_recovery | /system/etc/install-recovery.sh | |
racoon | /system/bin/racoon | |
mtpd | /system/bin/mtpd | |
keystore | /system/bin/keystore | |
dumpstate | /system/bin/dumpstate | |
sshd | /system/bin/start-ssh | |
mdnsd | /system/bin/mdnsd |
现在我们继续看,动作在编排进action_queue队列之后,又是如何执行的呢?我们知道,init进程最终会进入一个for(;;)循环,在这个循环中,每次都会尝试执行一个command:
int main(int argc, char **argv) { . . . . . . . . . . . . // 这个for循环非常重要哦! for(;;) { int nr, i, timeout = -1; execute_one_command(); restart_processes(); . . . . . . }
其中调用的execute_one_command()的代码如下:
void execute_one_command(void) { int ret; if (!cur_action || !cur_command || is_last_command(cur_action, cur_command)) { cur_action = action_remove_queue_head(); cur_command = NULL; if (!cur_action) return; INFO("processing action %p (%s)\n", cur_action, cur_action->name); cur_command = get_first_command(cur_action); } else { cur_command = get_next_command(cur_action, cur_command); } if (!cur_command) return; ret = cur_command->func(cur_command->nargs, cur_command->args); INFO("command '%s' r=%d\n", cur_command->args[0], ret); }
它的意思是说,执行“当前action”(cur_action)的“当前command”(cur_command)。如果执行时没有“当前action”,就尝试从action_queue队列的头部摘取一个节点。如果执行时没有“当前command”,就从“当前action”中获取下一个该执行的command。而一旦得到了该执行的command,就回调其func函数指针。
在那几个core类型的service中,有一个非常重要的service,叫做zygote,它是android内部创建新进程的核心服务,但本文就不对它细说了。
下面我们补充说明几个init进程里的运作机理。
关于service的重启方法,其实用到了linux的一点儿信号机制。在init进程的main()函数中,除了“early-init”、“init”等子阶段外,还有个子阶段叫作“signal_init”:
queue_builtin_action(signal_init_action, "signal_init");
当init进程执行到这个子阶段时,会执行signal_init_action()回调函数:
【system/core/init/Init.c】
static int signal_init_action(int nargs, char **args) { signal_init(); return 0; }
【system/core/init/Signal_handler.c】
void signal_init(void) { int s[2]; struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = sigchld_handler; act.sa_flags = SA_NOCLDSTOP; sigaction(SIGCHLD, &act, 0); // 向系统注册一个系统回调 /* create a signalling mechanism for the sigchld handler */ if (socketpair(AF_UNIX, SOCK_STREAM, 0, s) == 0) { signal_fd = s[0]; // 以后回调函数会向这个fd写数据 signal_recv_fd = s[1]; fcntl(s[0], F_SETFD, FD_CLOEXEC); fcntl(s[0], F_SETFL, O_NONBLOCK); fcntl(s[1], F_SETFD, FD_CLOEXEC); fcntl(s[1], F_SETFL, O_NONBLOCK); } handle_signal(); }
请注意,signal_init()中调用了sigaction(SIGCHLD,...)一句。在linux系统中,当一个进程终止或者停止时,系统会向其父进程发送SIGCHLD信号。sigaction()动作可以被理解为向系统注册一个系统回调函数。在本例中,每当有子进程终止时,系统就会回调sigchld_handler()回调函数,该函数的代码如下:
【system/core/init/Signal_handler.c】
static void sigchld_handler(int s) { write(signal_fd, &s, 1); }
看到了吗?无非是向signal_init()中创建的“socket对”里的signal_fd写数据,于是“socket对”的另一个句柄signal_recv_fd就可以得到所写的数据。
在init进程的main()函数中,最终进入那个无限for循环,监听系统的风吹草动,其中就包括监听这个signal_recv_fd:
int main(int argc, char **argv) { . . . . . . . . . . . . for(;;) { . . . . . . if (!signal_fd_init && get_signal_fd() > 0) { ufds[fd_count].fd = get_signal_fd(); // 就是signal_recv_fd ! ufds[fd_count].events = POLLIN; ufds[fd_count].revents = 0; fd_count++; signal_fd_init = 1; } . . . . . . . . . . . . nr = poll(ufds, fd_count, timeout); . . . . . . for (i = 0; i < fd_count; i++) { if (ufds[i].revents == POLLIN) { if (ufds[i].fd == get_property_set_fd()) handle_property_set_fd(); // 处理设置属性的命令 else if (ufds[i].fd == get_keychord_fd()) handle_keychord(); // 处理类似混合按键的命令,类似同时按 // 钢琴上的若干键 else if (ufds[i].fd == get_signal_fd()) handle_signal(); // 处理因子进程挂掉而发来的信号 } } } . . . . . . }
当监听到signal_recv_fd有动静时,会调用handle_signal()来处理:
void handle_signal(void) { char tmp[32]; /* we got a SIGCHLD - reap and restart as needed */ read(signal_recv_fd, tmp, sizeof(tmp)); while (!wait_for_one_process(0)) ; }
wait_for_one_process()的代码截选如下:
static int wait_for_one_process(int block) { . . . . . . while ( (pid = waitpid(-1, &status, block ? 0 : WNOHANG)) == -1 && errno == EINTR ); . . . . . . svc = service_find_by_pid(pid); // 查询出是哪个service进程挂掉了 . . . . . . svc->pid = 0; svc->flags &= (~SVC_RUNNING); if ((svc->flags & SVC_ONESHOT) && !(svc->flags & SVC_RESTART)) { svc->flags |= SVC_DISABLED; } if (svc->flags & (SVC_DISABLED | SVC_RESET) ) { notify_service_state(svc->name, "stopped"); return 0; } . . . . . . svc->flags &= (~SVC_RESTART); svc->flags |= SVC_RESTARTING; /* Execute all onrestart commands for this service. */ list_for_each(node, &svc->onrestart.commands) { cmd = node_to_item(node, struct command, clist); cmd->func(cmd->nargs, cmd->args); } notify_service_state(svc->name, "restarting"); return 0; }
该函数的代码比较清晰,当init进程被通知某个子进程终止时,它会尝试找到这个子进程对应的service节点,并辗转给该节点的flags域添加SVC_RESTARTING标记,然后又会马上执行这个service节点中所有onrestart选项对应的动作。
代码中处理SVC_ONESHOT的地方多判断了SVC_RESTART标志,这是为什么呢?我想理由是这样的:SVC_ONESHOT表达的意思是“只打一枪”,也就是说以它装饰的service进程,就算挂掉了,也不会重新启动。然而必须兼顾到其他进程restart的情况。假如有另一个进程会连锁restart该service,此时就算该service有SVC_ONESHOT标志,它还是应该再次启动的。
svc节点的onrestart域本身就是个action类型的域:
struct action onrestart;
现在开始遍历onrestart域里的commands列表:
list_for_each(node, &svc->onrestart.commands) { cmd = node_to_item(node, struct command, clist); cmd->func(cmd->nargs, cmd->args); }
看来,service的那些onrestart子句是一次性完成的。我们以前文说的zygote服务为例,当它重启时,会执行两次do_write()以及两次do_start(),分别启动media服务和netd服务。
最后,wait_for_one_process()还会调用一下notify_service_state()。毕竟这是因为某个service挂掉了,才会再走到这里的,现在我们马上就要重新启动那个刚死的service啦,所以最好还是做一些必要的“通知动作”。请注意,这种关于重启service的“通知”并不是简单发个事件什么的,而是设置某个相应的系统属性。具体的动作请看notify_service_state()的代码:
void notify_service_state(const char *name, const char *state) { char pname[PROP_NAME_MAX]; int len = strlen(name); if ((len + 10) > PROP_NAME_MAX) return; snprintf(pname, sizeof(pname), "init.svc.%s", name); property_set(pname, state); }
看到了吗?会设置一个以“init.svc.”打头的系统属性。比如重启zygote服务,此时就会把“init.svc.zygote”属性值设为“SVC_RESTARTING”。
大家有没有注意到,wait_for_one_process()里根本没有fork动作。这也就是说,wait_for_one_process()中并不会立即重启新的service进程。大家都知道现在我们正处于init进程的无限for循环中,所以程序从wait_for_one_process()返回后,总会再次走到for循环中的restart_processes():
int main(int argc, char **argv) { . . . . . for(;;) { int nr, i, timeout = -1; execute_one_command(); restart_processes();
此时才会重启新的进程:
static void restart_processes() { process_needs_restart = 0; service_for_each_flags(SVC_RESTARTING, restart_service_if_needed); }
遍历service_list列表,找出那些flags中携带有SVC_RESTARTING标志的service节点,并执行restart_service_if_needed()。
static void restart_service_if_needed(struct service *svc) { time_t next_start_time = svc->time_started + 5; if (next_start_time <= gettime()) { svc->flags &= (~SVC_RESTARTING); service_start(svc, NULL); return; } if ((next_start_time < process_needs_restart) || (process_needs_restart == 0)) { process_needs_restart = next_start_time; } }
注意,为了防止出现service连续紧密重启的情况,next_start_time会赋值为svc->time_started + 5,也就是说,至少得喘息个5毫秒,然后才能进行下一次重启。这就是Android中重启service的具体流程。
现在我们顺便说一下用混合按键重启service的技术,这部分内容现在已经很少用到了。至少在我们常见的项目的init.rc脚本里是搜不到“keycodes”关键字的。这个关键字是个option,如果某个service里含有keycodes选项的话,就说明设计者希望在用户按下某种组合键时,init进程能重启这个service。
这种能点击出的组合键,很像同时按下几个钢琴键而发出和旋,因此被称为keychord。在init进程的启动子过程中,“keychord(初始化)子阶段”甚至还要早于“init子阶段”呢。
queue_builtin_action(keychord_init_action, "keychord_init");
其中keychord_init_action()的代码如下:
【system/core/init/Init.c】
static int keychord_init_action(int nargs, char **args) { keychord_init(); return 0; }
【system/core/init/Keychords.c】
void keychord_init() { int fd, ret; service_for_each(add_service_keycodes); if (!keychords) return; fd = open("/dev/keychord", O_RDWR); if (fd < 0) { ERROR("could not open /dev/keychord\n"); return; } fcntl(fd, F_SETFD, FD_CLOEXEC); ret = write(fd, keychords, keychords_length); if (ret != keychords_length) { ERROR("could not configure /dev/keychord %d (%d)\n", ret, errno); close(fd); fd = -1; } free(keychords); keychords = 0; keychord_fd = fd; }
初始化时,利用service_for_each(),遍历service_list列表,对每个列表节点调用add_service_keycodes(),该函数代码如下:
【system/core/init/Keychords.c】
void add_service_keycodes(struct service *svc) { struct input_keychord *keychord; int i, size; if (svc->keycodes) { /* add a new keychord to the list */ size = sizeof(*keychord) + svc->nkeycodes * sizeof(keychord->keycodes[0]); keychords = realloc(keychords, keychords_length + size); if (!keychords) { ERROR("could not allocate keychords\n"); keychords_length = 0; keychords_count = 0; return; } keychord = (struct input_keychord *) ((char *)keychords + keychords_length); keychord->version = KEYCHORD_VERSION; keychord->id = keychords_count + 1; keychord->count = svc->nkeycodes; svc->keychord_id = keychord->id; for (i = 0; i < svc->nkeycodes; i++) { keychord->keycodes[i] = svc->keycodes[i]; } keychords_count++; keychords_length += size; } }其中用到的keychords是个静态变量:
static struct input_keychord *keychords = 0;
它实质上指向了一块buffer,该buffer最终会存下所有keychord信息。当我们遍历service_list列表时,一旦发现某个service节点携带有keycodes,就会从这个buffer中划分出一块,并在其中写入从service节点读取到的keycodes信息。因为不同service携带的keycode部分可能不一样,所以每次分出的那块内存的大小也不太一样。不过大体上每一小块记录的都是input_keychord结构,该结构的定义如下:
【kernel/include/linux/Keychord.h】
struct input_keychord { __u16 version; __u16 id; __u16 count; __u16 keycodes[]; };
另外,请注意上面代码中的这几句:
keychord->id = keychords_count + 1; keychord->count = svc->nkeycodes; svc->keychord_id = keychord->id;
keychord信息里有个唯一的id号,而且这个id号还会回写到service节点的keychord_id域。 经过这次遍历,我们大体上可以画出下面这样的示意图:
在整理好keychords这块buffer后,keychord_init()会把它写入“/dev/keychord”设备文件。
fd = open("/dev/keychord", O_RDWR); . . . . . . ret = write(fd, keychords, keychords_length);
keychord_fd = fd;
记录下fd有什么用呢?很简单,init进程在最后那个for循环里,会监听这个fd,从而感知到从驱动层发来的混合按键,代码如下:
if (!keychord_fd_init && get_keychord_fd() > 0) { ufds[fd_count].fd = get_keychord_fd(); // 得到的就是那个keychord文件描述符 ufds[fd_count].events = POLLIN; ufds[fd_count].revents = 0; fd_count++; keychord_fd_init = 1; }一旦监听到有混合按键发生了,就会走到下面的handle_keychord():
for (i = 0; i < fd_count; i++) { if (ufds[i].revents == POLLIN) { if (ufds[i].fd == get_property_set_fd()) handle_property_set_fd(); else if (ufds[i].fd == get_keychord_fd()) handle_keychord(); // 处理混合按键 else if (ufds[i].fd == get_signal_fd()) handle_signal(); } }
【system/core/init/Keychords.c】
void handle_keychord() { struct service *svc; char adb_enabled[PROP_VALUE_MAX]; int ret; __u16 id; // Only handle keychords if adb is enabled. property_get("init.svc.adbd", adb_enabled); ret = read(keychord_fd, &id, sizeof(id)); if (ret != sizeof(id)) { ERROR("could not read keychord id\n"); return; } if (!strcmp(adb_enabled, "running")) { svc = service_find_by_keychord(id); if (svc) { INFO("starting service %s from keychord\n", svc->name); service_start(svc, NULL); } else { ERROR("service for keychord %d not found\n", id); } } }
此时会从/dev/keychord设备文件里读取一个id号,还记得前文说到的“id号会回写到service节点的keychord_id域”吗,现在会再次遍历service_list列表,找到那个keychord_id和读到的id匹配的service节点,然后调用service_start(svc, NULL)启动这个service。
关于init进程,我们就先说这么多吧。限于篇幅,我们不得不把很多不那么重要的细节省去,有兴趣的同学可以自行深入研究。