【转载】内存碎片

内存碎片编辑

内存碎片分为:内部碎片和外部碎片

内部碎片

内部碎片就是已经被分配出去(能明确指出属于哪个进程)却不能被利用的内存空间;
内部碎片是处于区域内部或页面内部的存储块。占有这些区域或页面的进程并不使用这个存储块。而在进程占有这块存储块时,系统无法利用它。直到进程释放它,或进程结束时,系统才有可能利用这个存储块。
单道连续分配只有内部碎片。多道固定连续分配既有内部碎片,又有外部碎片。

外部碎片

外部碎片指的是还没有被分配出去(不属于任何进程),但由于太小了无法分配给申请内存空间的新进程的内存空闲区域。
外部碎片是出于任何已分配区域或页面外部的空闲存储块。这些存储块的总和可以满足当前申请的长度要求,但是由于它们的地址不连续或其他原因,使得系统无法满足当前申请。
多道可变连续分配只有外部碎片。

2减少内存碎片编辑

内 存碎片是因为在分配一个内存块后,使之空闲,但不将空闲内存归还给最大内存块而产生的。最后这一步很关键。如果内存分配程序是有效的,就不能阻止系统分配 内存块并使之空闲。即使一个内存分配程序不能保证返回的内存能与最大内存块相连接(这种方法可以彻底避免内存碎片问题),但你可以设法控制并限制内存碎 片。所有这些作法涉及到内存块的分割。每当系统减少被分割内存块的数量,确保被分割内存块尽可能大时,你就会有所改进。
这样做的目的是尽可能多次反复使用内存块,而不要每次都对内存块进行分割,以正好符合请求的存储量。分割内存块会产 生大量的小内存碎片,犹如一堆散沙。以后很难把这些散沙与其余内存结合起来。比较好的办法是让每个内存块中都留有一些未用的字节。留有多少字节应看系统要 在多大程度上避免内存碎片。对小型系统来说,增加几个字节的内部碎片是朝正确方向迈出的一步。当系统请求1字节内存时,你分配的存储量取决于系统的工作状 态。
如果系统分配的内存存储量的主要部分是 1 ~ 16 字节,则为小内存也分配 16 字节是明智的。只要限制可以分配的最大内存块,你就能够获得较大的节约效果。但是,这种方法的缺点是,系统会不断地尝试分配大于极限的内存块,这使系统可 能会停止工作。减少最大和最小内存块存储量之间内存存储量的数量也是有用的。采用按对数增大的内存块存储量可以避免大量的碎片。例如,每个存储量可能都比 前一个存储量大 20%。在嵌入式系统中采用“一种存储量符合所有需要”对于嵌入式系统中的内存分配程序来说可能是不切实际的。这种方法从内部碎片来看是代价极高的,但系 统可以彻底避免外部碎片,达到支持的最大存储量。
将相邻空闲内存块连接起来是一种可以显著减少内存碎片的技术。如果没有这一方法,某些分配算法(如最先适合算法)将 根本无法工作。然而,效果是有限的,将邻近内存块连接起来只能缓解由于分配算法引起的问题,而无法解决根本问题。而且,当内存块存储量有限时,相邻内存块 连接可能很难实现。
有些内存分配器很先进,可以在运行时收集有关某个系统的分配习惯的统计数据,然后,按存储量将所有的内存分配进行分 类,例如分为小、中和大三类。系统将每次分配指向被管理内存的一个区域,因为该区域包括这样的内存块存储量。较小存储量是根据较大存储量分配的。这种方案 是最先适合算法和一组有限的固定存储量算法的一种有趣的混合,但不是实时的。
有效地利用暂时的局限性通常是很困难的,但值得一提的是,在内存中暂时扩展共处一地的分配程序更容易产生内存碎片。尽管其它技术可以减轻这一问题,但限制不同存储量内存块的数目仍是减少内存碎片的主要方法。
现代软件环境业已实现各种避免内存碎片的工具。例如,专为分布式高可用性容错系统开发的 OSE 实时操作系统可提供三种运行时内存分配程序:内核 alloc(),它根据系统或内存块池来分配;堆 malloc(),根据程序堆来分配; OSE 内存管理程序 alloc_region,它根据内存管理程序内存来分配。
从 许多方面来看,Alloc就是终极内存分配程序。它产生的内存碎片很少,速度很快,并有判定功能。你可以调整甚至去掉内存碎片。只是在分配一个存储量后, 使之空闲,但不再分配时,才会产生外部碎片。内部碎片会不断产生,但对某个给定的系统和八种存储量来说是恒定不变的。
Alloc 是一种有八个自由表的固定存储量内存分配程序的实现方法。系统程序员可以对每一种存储量进行配置,并可决定采用更少的存储量来进一步减少碎片。除开始时以 外,分配内存块和使内存块空闲都是恒定时间操作。首先,系统必须对请求的存储量四舍五入到下一个可用存储量。就八种存储量而言,这一目标可用三个 如果 语句来实现。其次,系统总是在八个自由表的表头插入或删除内存块。开始时,分配未使用的内存要多花几个周期的时间,但速度仍然极快,而且所花时间恒定不 变。
堆 malloc() 的内存开销(8 ~ 16 字节/分配)比 alloc小,所以你可以停用内存的专用权。malloc() 分配程序平均来讲是相当快的。它的内部碎片比alloc()少,但外部碎片则比alloc()多。它有一个最大分配存储量,但对大多数系统来说,这一极限 值足够大。可选的共享所有权与低开销使 malloc() 适用于有许多小型对象和共享对象的 C++ 应用程序。堆是一种具有内部堆数据结构的伙伴系统的实现方法。在 OSE 中,有 28 个不同的存储量可供使用,每种存储量都是前两种存储量之和,于是形成一个斐波那契(Fibonacci)序列。实际内存块存储量为序列数乘以 16 字节,其中包括分配程序开销或者 8 字节/分配(在文件和行信息启用的情况下为 16 字节)。
当你很少需要大块内存时,则OSE内存管理程序最适用。典型的系统要把存储空间分配给整个系统、堆或库。在有 MMU 的系统中,有些实现方法使用 MMU 的转换功能来显著降低甚至消除内存碎片。在其他情况下,OSE 内存管理程序会产生非常多的碎片。它没有最大分配存储量,而且是一种最先适合内存分配程序的实现方法。内存分配被四舍五入到页面的偶数——典型值是 4 k 字节。

你可能感兴趣的:(【转载】内存碎片)