项目:
是一个发展中的推荐系统
http://www.oschina.net/p/crab
安装:
( 优先用easy_install )
* numpy
Q:遇到缺少vcvarsall.bat的问题
A: 当已经安装了vs20xx时,可设置环境变量
SET VS90COMNTOOLS=%VS100COMNTOOLS%
Q:遇到各种编译错误
A:直接上win的安装版,注意和python版本对应
http://sourceforge.net/projects/numpy/files/NumPy/
* Scipy
直接上win的安装版,注意和python版本对应
http://sourceforge.net/projects/scipy/files/Scipy
* scikits.learn
依赖numpy
* matplotlib
为了构建文档和一些示例代码
依赖较多,可跳过
* crab
easy_install安装效果不好,import scikits.crab提示找不到
改在 https://github.com/muricoca/crab 下载源码包,用python setup.py install 安装
(在linux下也是同样情况)
----------------------------------
* 测试
保存为文件,直接python执行即可
#!/usr/bin/env python #coding=utf-8 def base_demo(): # 基础数据-测试数据 from scikits.crab import datasets movies = datasets.load_sample_movies() #print movies.data #print movies.user_ids #print movies.item_ids #Build the model from scikits.crab.models import MatrixPreferenceDataModel model = MatrixPreferenceDataModel(movies.data) #Build the similarity # 选用算法 pearson_correlation from scikits.crab.metrics import pearson_correlation from scikits.crab.similarities import UserSimilarity similarity = UserSimilarity(model, pearson_correlation) # 选择 基于User的推荐 from scikits.crab.recommenders.knn import UserBasedRecommender recommender = UserBasedRecommender(model, similarity, with_preference=True) print recommender.recommend(5) # 输出个结果看看效果 Recommend items for the user 5 (Toby) # 选择 基于Item 的推荐(同样的基础数据,选择角度不同) from scikits.crab.recommenders.knn import ItemBasedRecommender recommender = ItemBasedRecommender(model, similarity, with_preference=True) print recommender.recommend(5) # 输出个结果看看效果 Recommend items for the user 5 (Toby) def itembase_demo(): from scikits.crab.models.classes import MatrixPreferenceDataModel from scikits.crab.recommenders.knn.classes import ItemBasedRecommender from scikits.crab.similarities.basic_similarities import ItemSimilarity from scikits.crab.recommenders.knn.item_strategies import ItemsNeighborhoodStrategy from scikits.crab.metrics.pairwise import euclidean_distances movies = { 'Marcel Caraciolo': \ {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0}, \ 'Paola Pow': \ {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, \ 'Leopoldo Pires': \ {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0}, 'Lorena Abreu': \ {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, \ 'Steve Gates': \ {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, \ 'Sheldom':\ {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, \ 'Penny Frewman': \ {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0, 'Superman Returns':4.0}, 'Maria Gabriela': {} } model = MatrixPreferenceDataModel(movies) items_strategy = ItemsNeighborhoodStrategy() similarity = ItemSimilarity(model, euclidean_distances) recsys = ItemBasedRecommender(model, similarity, items_strategy) print recsys.most_similar_items('Lady in the Water') #Return the recommendations for the given user. print recsys.recommend('Leopoldo Pires') #Return the 2 explanations for the given recommendation. print recsys.recommended_because('Leopoldo Pires', 'Just My Luck', 2) #Return the similar recommends print recsys.most_similar_items('Lady in the Water') #估算评分 print recsys.estimate_preference('Leopoldo Pires','Lady in the Water') base_demo() itembase_demo()
推荐算法:
这里不细究算法本身,只介绍概念,方便理解crab的实现
* kNN算法
简单的分类/聚类算法,从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。
3个主要因素:训练集、距离或相似的衡量、k的大小
* SVD
带有社交因素,根据已有的评分情况,分析出评分者对各个因子的喜好程度以及电影包含各个因子的程度,最后再反过来根据分析结果预测评分