- 仅77K好用到爆!后悔没早发现
Mbblovey
服务器pdf网络linuxphp
手机不离手,眼睛受不了!现在大家每天盯着手机的时间越来越长,眼睛干涩、疲劳、视力下降...各种问题都找上门!今天给大家带来一款超级良心的护眼App——纤云护眼软件介绍软件大小竟然只有77KB,而且完全免费,无任何联网权限!简直是护眼神器中的一股清流!提供四种专业的滤色模式,可以根据不同环境和需求自由切换,有效过滤蓝光,缓解眼部疲劳更多功能自行体验。小编亲测,开启纤云护眼后,手机屏幕看起来明显柔和了
- SDL2渲染RGB图像
qq_52484093
音视频音视频
SDL的相关函数使用SDL渲染RGB图像#include#include#include#undefmain#pragmacomment(lib,"SDL2.lib")usingnamespacestd;intmain(){constintw=800;constinth=600;//1.初始化SDLVideo库if(SDL_Init(SDL_INIT_VIDEO)){coutpixels(newu
- SDL渲染应用(1)
好想吃杏干
音视频开发应用c++
SDL渲染应用(1)基本流程案例一:使用SDL渲染一幅RGB图像数据#include#include#pragmacomment(lib,"SDL2.lib")#undefmain()usingnamespacestd;intmain(intargc,char*argv[]){/*1.创建窗口的大小*/intw=800;inth=600;/*初始SDLvideio库,并判断是初始化成功返回0视为成
- 四阶数独——深度优先搜索dfs
我爱工作&工作love我
c++深度优先算法
文章目录四阶数独例题讲解深度优先dfs搜索知识点算法思想应用代码框架四阶数独例题讲解题目描述这里讨论一种简化的数独——四阶数独。给出一个4×4的格子,每个格子只能填写1到4之间的整数,要求每行、每列和四等分更小的正方形部分都刚好由1到4组成。求总共有多少种不同的数独?输出结果:288思路常规思路就是根据格子序号挨个设置数如果每次都是从第一个开始设置,暴力枚举,一个格子四种选择,16个格子所以就有4
- SDL渲染RGB数据到QT的控件中通过定时器刷新
cpp文件:#include"sdlqtrgb.h"#includestaticSDL_Window*sdl_win=NULL;staticSDL_Renderer*sdl_render=NULL;staticSDL_Texture*sdl_texture=NULL;staticintsdl_width=0;staticintsdl_height=0;staticunsignedchar*rgb=
- 数据结构——图的遍历之深度优先遍历(DFS算法)_全世界最可爱的王小帅_CSDN博客
全世界最可爱的王小帅
数据结构图论算法cppc#
数据结构——图的遍历之深度优先遍历图的遍历一般分为深度优先遍历和广度优先遍历下面我们要说的是深度优先遍历**(DFS算法)**1,我们首先选择一个顶点作为起始点,假设我们选择顶点v作为起始点,首先访问v,然后找v的邻接点,访问v的一个还未被访问过邻接点w1,2,再以w1为起始点,然后去找w1的邻接点,访问w1的一个还未被访问过的邻接点w2,再以w2作为起始点继续往下访问…3,如果我们访问到一个顶点
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- SDL渲染一幅图像
环境配置下载源码:http://www.libsdl.org/download-2.0.php进入到SDL2-2.0.14\VisualC用visualstudio2019打开SDL.sln将工程升级到vs2019选择对的,debug|releasex64|x86进行编译生成相应的.dll、.pdb和.lib然后将对应的.dll、.pdb和.lib放到对应目录中,并配置值相应的工程目录API介绍1
- 代码随想录|图论|07岛屿的最大面积
Paper Clouds
算法深度优先图论数据结构c++
leetcode:100.岛屿的最大面积题目题目描述给定一个由1(陆地)和0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。输入描述第一行包含两个整数N,M,表示矩阵的行数和列数。后续N行,每行包含M个数字,数字为1或者0,表示岛屿的单元格。输出描述输出一个整数,表示岛屿的最
- 【Go】入门Go应该怎么学
CodeWithMe
Gogolang开发语言后端
Go语言学习路线图一、为什么学Go?简洁、直观,容易上手,语法像C又比C简洁天然支持并发(goroutine+channel)编译速度快、跨平台强、部署简单(一个二进制)在云原生(K8s)、微服务、工具链开发领域非常受欢迎拥有丰富的标准库与成熟的社区二、学习阶段与资源第一阶段:Go基础语法&核心概念内容:变量、常量、类型流程控制(if、for、switch)数组、切片、map、字符串函数、返回值、
- 顺序队列和链式队列
高斯林.神犇
数据结构
一,队列上次讲到栈的插入删除在一端进行,那么这次我们要讲的队列是插入删除分别在两端进行,我们可以定义两个标识分别为插入标识(front)和删除标识(rear)。在我们的循环队列中队满和队空都会使得rear==front,可以有很多代码逻辑来实现队满和队空的区分,比如我们可以定义一个flag变量,当rear因为入栈操作使得两者相等就可以变为1,因为出栈操作使得两者相等就可以变为0。但是由于多了一个变
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 关于 java:8. Java 内存模型与 JVM 基础
shenyan~
javajvm开发语言
一、堆Java堆是JVM中所有线程共享的运行时内存区域,用于存放所有对象实例、数组以及类的实例字段值。在Java中:Stringstr=newString("abc");newString("abc")创建的对象就分配在堆中。1.1堆的特点特性说明共享区域所有线程共享堆GC管理垃圾回收器对堆管理最频繁分代模型为提高GC性能,堆被划分为新生代/老年代等区域空间大堆是JVM管理内存中最大的区域慢速堆分
- 数据结构与算法:深度优先的实战指南
数据结构与算法:深度优先的实战指南关键词:深度优先搜索(DFS)、递归、栈、图遍历、路径查找、迷宫寻路、算法实战摘要:深度优先搜索(DFS)是计算机科学中最经典的算法之一,被广泛应用于路径查找、游戏AI、社交网络分析等场景。本文将用“迷宫探险”的故事串联核心概念,结合生活案例、代码实战和LeetCode经典题,带您从0到1掌握DFS的底层逻辑与实战技巧。即使你是算法新手,也能通过通俗易懂的讲解,真
- 从零开始:Python实现语音识别的完整教程
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络python语音识别xcodeai
从零开始:Python实现语音识别的完整教程关键词:Python、语音识别、完整教程、语音输入、文字输出摘要:本文将带领大家从零开始,用Python实现语音识别功能。我们会详细介绍语音识别的核心概念、相关算法原理,通过具体的代码示例,一步步教大家搭建开发环境、实现语音识别代码,并对代码进行解读。同时,还会探讨语音识别的实际应用场景、推荐相关工具和资源,最后分析未来发展趋势与挑战。背景介绍目的和范围
- 从零开始:Python实现语音识别的完整教程_副本
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络python语音识别开发语言ai
从零开始:Python实现语音识别的完整教程关键词:Python、语音识别、语音转文本、音频处理、机器学习、深度学习、自然语言处理摘要:本文将带你从零开始学习如何使用Python实现语音识别功能。我们将从基础概念讲起,逐步深入到实际代码实现,涵盖音频处理、特征提取、模型训练等关键环节,最终构建一个完整的语音识别系统。无论你是初学者还是有一定经验的开发者,都能从本教程中获得实用的知识和技能。背景介绍
- markdown语法教学
7忆--栅
markdownvscode笔记visualstudiocode其他
目录1.文章前面的目录生成2.标题3.字体3.1、字体的斜体/粗体/...3.2、字体的颜色3.3、字体的格式3.4、字体的大小3.5、文本注音3.6、文本高亮显示3.7、添加背景颜色附1:颜色+格式+大小+高亮+注音合体附2:颜色+格式+大小+背景颜色+注音合体4.引用5.分割线6.删除线7.下划线8.代码块9.公式块10.列表10.1、有序列表10.2、无序列表11.待办事项12.特殊符号13
- 一文读懂Kubernetes:架构、优势与应用
t0_54program
大数据与人工智能kubernetes架构容器个人开发
在当今的云原生计算领域,容器和Kubernetes的应用极为广泛。尽管Kubernetes是一项相对较新的技术,但众多全球企业已在生产环境中用它来管理关键业务应用程序。它之所以广受欢迎,得益于其一系列强大的功能,如增强的安全性、更出色的微服务管理能力、更高的可观测性,以及更高效的扩展和资源利用。什么是Kubernetes?Kubernetes,常简称为k8s,是谷歌实验室于2014年开发的开源容器
- Spring Boot秒杀系统崩溃?一招解决高并发难题
国际云
大数据数据库架构
想象一下:精心策划的秒杀活动终于上线,瞬间涌入百万用户,你的系统却不堪重负,页面卡死、库存错乱、订单丢失…这种噩梦场景,正是众多开发者面对高并发时的真实困境。以SpringBoot为核心的秒杀系统,如何突破性能瓶颈?本文将揭示核心解决方案,助你轻松应对流量洪峰。一、秒杀系统崩溃?高并发下的致命痛点流量洪峰:瞬时并发量(QPS/TPS)远超日常数十甚至数百倍,服务器资源(CPU、内存、网络、数据库连
- 从零开始:用Python构建AI语音识别应用的完整指南
AI大模型应用之禅
人工智能python语音识别ai
从零开始:用Python构建AI语音识别应用的完整指南关键词:Python语音识别、AI语音处理、语音转文本、SpeechRecognition库、端到端模型摘要:本文从0到1带您掌握用Python构建AI语音识别应用的全流程。我们将用“给小学生讲故事”的方式,拆解语音识别的核心概念(如音频采集、特征提取、模型解码),结合代码实战(从调用API到自定义模型),并覆盖环境搭建、常见问题和未来趋势。无
- 深度C盘清理技巧
nightunderblackcat
基础项目开发语言windows
大家好!C盘空间告急几乎是每个Windows用户都会遇到的“成长烦恼”。系统运行缓慢、更新失败、软件无法安装……这些问题的元凶往往就是被塞满的C盘。今天我们就来一场彻底的“大扫除”,不仅清理表面垃圾,更要深入系统释放宝贵空间!第一步:基础清洁-扫除显性垃圾磁盘清理工具(最基础但有效!)操作:打开“此电脑”->右键点击C盘->选择属性->点击磁盘清理。重点清理:Windows更新清理:这是大头!系统
- 代码随想录: 图论| 岛屿数量
王鹏程_
深度优先算法岛屿数量图论
题目链接:99.岛屿数量题目描述:给定一个由1(陆地)和0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。输入描述:第一行包含两个整数N,M,表示矩阵的行数和列数。后续N行,每行包含M个数字,数字为1或者0。输出描述:输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出0。输入示例:4511000110000010
- 爬虫实战之图片及人物信息爬取
nightunderblackcat
Python进阶爬虫python
爬虫对于许多Python初学者来说都是一个好玩有趣的技能,但大多数人都是从网上得来的经验,会认为学习爬虫是件很难的事,像处理反爬机制以及反反爬,总是让人望而却步,今天我们来进行爬虫实操,需要注意爬虫本身并不违法,但恶意爬取文件将会涉及相关法律,为避免不必要的纠纷,本文采取一个不存在的网站进行演示,本文适合Python初学者以及爬虫初学者学习,博主是大一.所以讲的话和相关技能并不特别专业,望大家谅解
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- MyBatis Plus 常用注解
需要重新演唱
webjavamybatisjava数据库
MyBatisPlus是一个基于MyBatis的增强工具,旨在简化开发过程,提高开发效率。它提供了许多实用的功能,如代码生成器、分页插件、条件构造器等,使得开发者可以更专注于业务逻辑的实现,而不必过多关注MyBatis的配置和SQL编写。MyBatisPlus常用注解MyBatisPlus提供了丰富的注解,用于简化实体类和数据库表之间的映射关系。以下是一些常用的注解:1.@TableName用于指
- Oracle 树形统计再进阶:类型多样性与高频类型分析(第三课)
AI、少年郎
oracle数据库
在《Oracle递归+Decode+分组函数实现复杂树形统计(第二课)》基础上,我们进一步攻克部门级请假数据的深度分析需求:1、统计每个部门(含所有下级)的请假类型多样性(共发生多少种类型)2、识别每个部门的高频请假类型(出现次数最多的类型,支持并列情况)3、扩展时间维度统计(按季度/月份分析趋势,示例以季度为例)通过DECODE、递归CTE与高级聚合函数的组合,实现从基础统计到业务洞察的跨越。一
- Oracle 进阶语法实战:从多维分析到数据清洗的深度应用(第四课)
AI、少年郎
oracle数据库
在《Oracle树形统计再进阶》(第三课)基础上,我们跳出传统SQL聚合框架,探索Oracle特有的高级语法特性,包括多维分析神器MODEL子句、数据清洗利器正则表达式、PL/SQL存储过程优化,以及基于执行计划的查询调优技巧。这些技术能解决传统方法难以处理的复杂场景,如动态列生成、不规则数据清洗、批量数据处理等。一、MODEL子句:多维数据建模与动态透视业务场景:动态生成各部门全年度各季度请假类
- 如何配置远程服务器
hai_zwh
服务器电脑配置维修专栏服务器运维
最近组内为了项目新购买了一个算力不错的装有ubuntu20.04系统的主机,本人尝试用此主机搭建一个供多人使用的服务器平台,网上看了很多教程说法不一而且很复杂,经过尝试后,本人探索出了一种较为简单的方法去配置远程服务器(这里以服务器主机为ubuntu系统作为例子)。1.首先,确定你的ubuntu系统的源进行了更新,如果没有更新,打开终端输入以下命令行:sudoaptupdate这里选择sudoap
- 黑盒测试用例设计方法
大帅哥zhangyao
测试用例
黑盒测试用例设计方法黑盒测试用例设计方法包括:等价类划分法、边界值分析法、判定表法、因果图法、正交实验法、状态迁移法、流程分析法等。一、测试设计方法1.等价类分析法1.什么是等价类划分法**等价类(EquivalenceClass)**是一种软件测试技术,旨在减少测试用例数量,同时确保测试的全面性。其核心思想是将输入域划分为若干子集,每个子集中的输入条件被认为是等效的。等价类的基本概念:输入域:指
- Linux 云服务器配置多网卡详解(附策略路由配置方法)Linux 云服务器多网卡配置、策略路由、IPRoute2、VPC私有网络
代码简单说
运维教程服务器linux网络
Linux云服务器配置多网卡详解(附策略路由配置方法)标签:Linux云服务器、多网卡配置、策略路由、IPRoute2、VPC私有网络前段时间项目上线遇到一个场景,需要给一台云服务器绑定多块网卡,让不同的业务走不同的内网通道,既要安全又要稳定。最开始我以为只是加块网卡那么简单,实际操作才发现,配置完还要配策略路由,不然根本ping不通,服务也收不到请求。为了让大家少走弯路,我把完整过程整理成这篇文
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla