- MiniMax - M1:开源大模型的革命性突破
开源大模型MiniMax-M1研究报告一、引言在人工智能技术飞速发展的当下,大模型领域的竞争愈发激烈。开源大模型以其开放性、可定制性和社区协作的优势,逐渐成为推动人工智能技术进步的重要力量。MiniMax-M1作为全球首个开源大规模混合架构的推理模型,一经发布便引起了广泛关注。它在长上下文处理、推理效率和成本控制等方面展现出了卓越的性能,为人工智能的发展带来了新的思路和方向。本文将对MiniMax
- 海思Hi3519DV500方案1200万无人机吊舱套板
weixin_Todd_Wong2010
嵌入式硬件AI前端边缘计算图像处理
海思Hi3519DV500方案1200万无人机吊舱套板Hi3519DV500是一颗面向行业市场推出的超高清智能网络摄像头SoC。该芯片最高支持四路sensor输入,支持最高4K@30fps的ISP图像处理能力,支持2FWDR、多级降噪、六轴防抖、全景拼接、多光谱融合等多种传统图像增强和处理算法,支持通过AI算法对输入图像进行实时降躁等处理,为用户提供了卓越的图像处理能力,集成了高效的神经网络推理引
- 搜索领域知识图谱的知识推理算法研究
搜索引擎技术
知识图谱算法人工智能ai
搜索领域知识图谱的知识推理算法研究关键词:知识图谱、知识推理、搜索算法、图神经网络、路径推理、规则推理、表示学习摘要:本文深入探讨搜索领域中知识图谱的知识推理算法。我们将从知识图谱的基本概念出发,分析不同类型的知识推理算法原理,包括基于规则的推理、基于表示的推理和基于路径的推理。通过实际案例和代码实现,展示这些算法如何提升搜索效果,最后讨论该领域的未来发展趋势和挑战。背景介绍目的和范围本文旨在系统
- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- Trae CN
WangLinXX
AIai
️技术实现深度架构设计采用微内核+插件化架构,核心引擎仅占15MB内存,通过RPC调用云侧AI模型(响应延迟约800ms)。本地缓存最近3次生成代码的AST结构,支持离线基础编辑。模型协同机制豆包1.5Pro负责需求语义解析,DeepSeek-R1生成代码骨架,DeepSeek-V3进行风格优化。三模型并行推理,最终由规则引擎校验API兼容性(如微信SDK版本匹配)。性能实测数据场景响应时间代码通
- 141G显存H20单机DeepSeek-R1满血FP8版性能测试
#环境参数#H20141G单机8卡,CUDA12.4,vLLMv0.8.3,flashinferv0.2.2#服务化命令#基于知乎大神的推荐出装与前期H800双机生产环境测试,在H20上开启EP、MLA等核心优化参数,实现推理吞吐性能最优吞吐量破10000tokens/s,VLLM0.8.1版本驱动下的Deepseek-r1671Bhttps://zhuanlan.zhihu.com/p/1887
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- 智能体综述和参考资料整理
木鱼时刻
大模型人工智能
目录总体介绍核心组件记忆系统工具系统计划与推理开发框架Single-AgentMulti-Agent智能体平台技术实现通信协议角色系统对话记忆MCP协议参考链接总体介绍智能体(AIAgents)是人工智能领域的重要发展方向,它们能够通过传感器感知环境并通过执行器对环境采取行动。根据罗素和诺维格在《人工智能:一种现代方法》(2016年)中的定义,AIAgent是任何可以通过传感器感知其环境并通过执行
- Windows系统部署YOLOv5 v6.1版本的训练与推理环境保姆级教程
lujx_1024
windowsYOLO
文章目录一·概述二·依赖环境(`prerequisites`)2.1硬件环境2.2软件环境三·环境安装3.1创建并激活虚拟环境3.2安装`Pytorch`与`torchvision`3.3校验`Pytorch`安装3.4下载`YOLOv5``v6.1`源码3.5安装`YOLOv5`依赖3.6下载预训练模型3.7安装其他依赖3.8测试环境安装3.9测试训练流程四·参考链接一·概述本文档主要记录使用工
- 大模型的“Tomcat”:一文读懂AI推理引擎(Inference Engine)
人工智能
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!魔都架构师|全网30W技术追随者大厂分布式系统/数据中台实战专家主导交易系统百万级流量调优&车联网平台架构AIGC应用开发先行者|区块链落地实践者以技术驱动创新,我们的征途是改变世界!实战干货:编程严选网1推理引擎是啥?从熟悉的“服务器”说起,想象你用Java写好了一个业务应用,如订单处理服务,打成一个JAR或WAR包。这包能直接
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- 【通过pip安装 Open-WebUI 快速使用入门】
慕慕涵雪月光白
llama代理模式
OpenWebUI是一个可扩展、功能丰富且用户友好的自托管AI平台,旨在完全离线操作。它支持各种LLM运行器,如Ollama和OpenAI兼容的API,内置RAG推理引擎,使其成为强大的AI部署解决方案。使用Docker快速入门如果Ollama在您的计算机上,请使用以下命令:dockerrun-d-p3000:8080--add-host=host.docker.internal:host-gat
- ✨【CosyVoice2-0.5B 实战】Segmentation fault (core dumped) 终极解决方案 (保姆级教程)
杨靳言先
语音识别语音生成python人工智能
【CosyVoice2-0.5B实战】Segmentationfault(coredumped)终极解决方案|torchaudio.save崩溃全流程排查与替代方案(保姆级教程)“运行没报错就是胜利,结果没崩溃就是奇迹。”——每一位搞TTS的开发者内心独白本文聚焦使用CosyVoice2-0.5B进行TTS推理过程中,常见的torchaudio.save()崩溃问题——Segmentationfa
- Bagel: 开源协作式AI数据管理平台的使用指南
llzwxh888
人工智能python
Bagel:开源协作式AI数据管理平台的使用指南引言在人工智能和机器学习领域,高质量的数据集对于模型训练和推理至关重要。Bagel作为一个开源的协作式AI数据管理平台,为开发者和研究人员提供了一个强大的工具,用于创建、共享和管理推理数据集。本文将深入探讨Bagel的特性、安装方法以及如何使用它来处理和管理向量数据。Bagel简介Bagel(OpenInferenceplatformforAI)可以
- AI原生应用性能优化:混合推理的7个最佳实践
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据AI-native性能优化ai
AI原生应用性能优化:混合推理的7个最佳实践关键词:AI原生应用、性能优化、混合推理、最佳实践、推理效率摘要:本文主要探讨了AI原生应用性能优化中混合推理的相关内容。首先介绍了文章的背景、目的、预期读者和文档结构等信息,接着对混合推理的核心概念进行了通俗易懂的解释,并阐述了各核心概念之间的关系,给出了核心概念原理和架构的文本示意图以及Mermaid流程图。详细讲解了核心算法原理和具体操作步骤,用数
- 使用vllm部署 Nanonets-OCR-s
没刮胡子
软件开发技术实战专栏Linux服务器技术人工智能AIocrpython深度学习
使用vLLM部署Nanonets-OCR-s模型的完整指南Nanonets-OCR-s作为基于Qwen2.5-VL-3B的多模态OCR模型,结合vLLM的高效推理引擎可显著提升部署性能。一、环境准备与依赖安装1.安装vLLM与多模态依赖#安装vLLM(含CUDA加速)pipinstallvllm==0.3.21#建议使用稳定版本pipinstalltransformers==4.35
- Java-数组拆分
季秋99
java
每日一题2022.11.6Java-数组拆分给定长度为2n的整数数组nums,你的任务是将这些数分成n对,例如(a1,b1),(a2,b2),…,(an,bn),使得从1到n的min(ai,bi)总和最大。返回该最大总和。示例1:输入:nums=[1,4,3,2]输出:4解释:所有可能的分法(忽略元素顺序)为:(1,4),(2,3)->min(1,4)+min(2,3)=1+2=3(1,3),(2
- 探秘阿里云Tair KVCache:大模型推理的加速引擎
云资源服务商
阿里云云计算人工智能
一、引言近年来,人工智能领域发展迅猛,大语言模型(LLM)不断取得突破,其应用场景也日益广泛。从智能客服到内容生成,从智能写作到智能翻译,大语言模型正在深刻地改变着我们的生活和工作方式。随着模型规模的不断扩大和推理需求的日益增长,大模型推理过程中的显存瓶颈问题逐渐凸显,成为制约其发展和应用的关键因素。在大模型推理中,KVCache技术作为一种优化手段,通过缓存历史Token的Key/Value向量
- 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark
伊利丹~怒风
Qualcomm人工智能AI编程pythonarm自然语言处理
前言在人工智能技术狂飙突进的时代,大模型正以前所未有的速度重塑各行业生态,从智能客服到多模态交互,从边缘推理到端侧部署,其应用场景不断拓展。而这一切革新的背后,离不开底层硬件的强力支撑。高通QCS8550作为面向下一代智能设备的旗舰级计算平台,凭借高达48TOPS的AI算力与先进的第七代高通AI引擎,在大模型性能表现上极具竞争力。其异构多核架构不仅能高效处理复杂的神经网络计算,还通过软硬件协同优化
- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- 企业级知识库私有化部署:腾讯混元+云容器服务TKE实战
大熊计算机
#腾讯云语言模型
1.背景需求分析在金融、医疗等数据敏感行业,企业需要构建完全自主可控的知识库系统。本文以某证券机构智能投研系统为原型,演示如何基于腾讯混元大模型与TKE容器服务实现:千亿级参数模型的私有化部署金融领域垂直场景微调高并发低延迟推理服务全链路安全合规方案1.1典型技术挑战#性能基准测试数据(单位:QPS)|场景|裸机部署|容器化部署|优化后||--------------------|--------
- 潜入思维的海洋:SoftCoT++如何让语言模型更聪明
步子哥
智能涌现语言模型人工智能自然语言处理
在人工智能的浩瀚星空下,大型语言模型(LLMs)如同一颗颗璀璨的恒星,照亮了从文本生成到复杂推理的广阔领域。然而,这些模型在推理任务中往往像是在迷雾中航行——尽管它们能抵达目的地,却常常因为固定的思维路径而错过更优的航线。2025年5月,一篇题为《SoftCoT++:Test-TimeScalingwithSoftChain-of-ThoughtReasoning》的论文如同一盏明灯,照亮了如何让
- DeepSeek-V3混合精度推理(FP8/BF16)原理与实战全解析
CarlowZJ
DEEPSEEK-V3
目录摘要混合精度推理的背景与意义DeepSeek-V3混合精度架构设计FP8与BF16核心原理详解混合精度推理核心实现实践案例:FP8权重转BF16与推理部署常见问题与注意事项最佳实践与扩展建议总结参考资料附录:可视化图表1.摘要本文系统梳理DeepSeek-V3在FP8/BF16混合精度推理方面的架构设计与工程实现,结合源码与实际案例,帮助开发者深入理解其混合精度推理原理、工程落地方法与性能优化
- C++day02(基本数据类型)
有点。
#C++少儿c++
学习目标初始C++基本数据类型整数与加减乘除学习变量与赋值语句老师要求你每天做题之后记录做题总共用了多少秒。但是计时器只能显示分钟+秒的格式。你有办法编写程序进行时间换算吗?想知道计算机如何表示数值吗?计算机又能进行哪些计算呢?玩过身份推理桌游吗?这类桌游中的角色有不同的身份。比如狼人杀中有狼人、平民、预言家、女巫等等不同身份的身份卡。编程语言的数据也有不同的类型,比如整数类型、字符类型、浮点数类
- 小模型和大模型的区别在哪里?
我非常不满意
人工智能深度学习机器学习
小模型和大模型在多个方面存在显著差异,主要体现在参数量、训练与运行速度、处理数据的准确性及应用场景上。参数量:大模型通常包含数十亿甚至数万亿个参数,这使得它们能够捕捉更复杂的数据模式和关系。相比之下,小模型的参数数量相对较少,通常在几百万到几千万之间,这限制了它们处理复杂任务的能力,但同时也意味着它们可以更快地训练和部署。训练与运行速度:由于参数数量的差异,小模型的训练和推理速度通常比大模型快。这
- 【PyTorch】保存和加载模型
Jackilina_Stone
#DeepLearningpytorchpython人工智能深度学习模型
目录■state_dict■用于推理的保存和加载模型保存/加载state_dict保存/加载整个模型以TorchScript格式导出/加载模型■保存和加载用于推断和/或恢复训练的一般检查点(Checkpoint)■将多个模型保存在一个文件中■使用来自不同模型的参数进行暖启动(Warmstarting)模型■跨设备保存和加载模型保存在GPU,加载到CPU保存在GPU,加载到GPU保存在CPU,加载到
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&