这两天看了下Mina和Netty的源码,想比较来说Mina的结构简洁易懂。Mina和Netty出自同一人,而Netty是作者对Mina的重构版,改进了很多。如果学习网络编程的话,个人建议从Mina开始,学完Mina后再看Netty,学习曲线会变得很平滑;同时还能深刻理解到作者改进点。
先看下Mina的结构图,如果之前做过java的web开发,熟悉servlet规范,看到这个结构图,会觉得非常亲切。这个结构描述了基本的网络开发结构。
- IoService 服务端和客户端I/O 操作的抽象,服务端为IoAcceptor,客户端为IoConnector
- IoSession 封装了服务端与客服端连接的会话信息
- IoFilterChain IoFilter处理链
- IoFilter 对服务端和客户端交互的数据做处理
- IoHandler 业务处理
好了,说了那么多还是先分析代码吧。Mina的客户端和服务端开发会略有不同,因为java网络编程的本身就是如此。我们先从分析服务器端开发入手。这里引用了Mina example中的Timer server,它的逻辑非常简单,就是接收到客户端的请求后,返回服务器的当前时间。
TimerServerHandler.java
public class TimeServerHandler extends IoHandlerAdapter {
@Override
public void messageReceived(IoSession session, Object message) throws Exception {
String msg = (String) message;
if ("quit".equals(msg.trim())) {
System.out.println("client " + session.getRemoteAddress() + " quited!");
session.close(false);
return;
}
Date date = new Date();
session.write(date.toString());
System.out.println("message written...");
}
}
开启服务器
private static final int SERVER_PORT = 8888;
public static void main(String[] args) throws IOException {
IoAcceptor acceptor = new NioSocketAcceptor();
acceptor.getFilterChain().addLast("logging", new LoggingFilter());
acceptor.getFilterChain().addLast("codec",
new ProtocolCodecFilter(new TextLineCodecFactory(Charset.forName("UTF-8"))));
acceptor.setHandler(new TimeServerHandler());
acceptor.getSessionConfig().setIdleTime(IdleStatus.BOTH_IDLE, 10);
acceptor.getSessionConfig().setReadBufferSize(2048);
acceptor.bind(new InetSocketAddress(SERVER_PORT));
}
1、先创建一个IoAcceptor实例,这里创建的是一个基于tcp的Java NIO版的IoAccptor
2、往FilterChain中追加了 LoggingFilter 和TextLineCodecFactory,LoggingFilter 可以对客户端的请求和服务器端的响应日志记录。TextLineCodecFactory 是一个协议编码解码器的工厂,就是将字节流与java中的String之间的相互转换。后面会详细介绍。
3、添加一个TimerServerHandler实例。TimeServerHandler 处理的逻辑就是在接收到客户端发送过来的字符串信息后,判断如果是quit,关闭与客户端的链接。不是的就返回服务器的当前时间的字符串。
4、设置一些IoSession的可配属性
5、绑定到一个端口上,开始监听客户端的请求。
上面我们只写了一个TimerServerHandler,并在messageReceived 方法中定义了自己的业务处理就轻松的完成了一个服务器端的开发,而不用去关心底层的链接和I/O处理,这就是mina的魅力所在,让开发人员从处理容易出错的I/O操作中解放出来。
现在我们逐个分析代码中出现的一些类和方法。先看一个IoService的继承体系。Mina提供了丰富的实现,支持很多协议,IoService的继承体系没有下面简单。简单起见,上面的图中值画出了Server端的结构,分析IoServeric先从IoAcceptor入手,而且就分析我们熟悉的java nio相关的类。
IoAcceptor是IoService在服务器端的一个抽象。先从接口的功能开始分析:
public interface IoService {
TransportMetadata getTransportMetadata();
void addListener(IoServiceListener listener);
void removeListener(IoServiceListener listener);
boolean isDisposing();
boolean isDisposed();
void dispose();
void dispose(boolean awaitTermination);
IoHandler getHandler();
void setHandler(IoHandler handler);
Map<Long, IoSession> getManagedSessions();
int getManagedSessionCount();
IoSessionConfig getSessionConfig();
IoFilterChainBuilder getFilterChainBuilder();
void setFilterChainBuilder(IoFilterChainBuilder builder);
DefaultIoFilterChainBuilder getFilterChain();
boolean isActive();
long getActivationTime();
Set<WriteFuture> broadcast(Object message);
IoSessionDataStructureFactory getSessionDataStructureFactory();
void setSessionDataStructureFactory(IoSessionDataStructureFactory sessionDataStructureFactory);
int getScheduledWriteBytes();
int getScheduledWriteMessages();
IoServiceStatistics getStatistics();
}
从接口的方法上分析可以了解到IoService的主要功能:
1、获取链接通信的元数据
2、IoService维护一个IoServiceListener的列表,IoServiceListener顾名思义,就是对IoService相关的事件进行监听。
3、关闭链接
4、一个IoService对应有一个IoHandler
5、IoService维护这一个IoSession的map
6、一个IoService对应一个FilterChain
7、支持广播功能
8、管理IoSession的中的数据结构
9、统计功能
IoAcceptor 在IoService基础上扩展了绑定和解绑SocketAddress的功能。
SocketAcceptor 在IoAcceptor的基础上将SocketAddress 具体化到InetSocketAddress,同时将IoSessionConfig具体化到SocketSessionConfig。提供了reuseaddress 和backlog的设置。关于backlog在SocketServer中的文档描述是
引用
backlog requested maximum length of the queue of incoming connections.
抽象类分析:
AbstractIoService 提供了IoService中的一些默认实现。
protected AbstractIoService(IoSessionConfig sessionConfig, Executor executor) {
if (sessionConfig == null) {
throw new IllegalArgumentException("sessionConfig");
}
if (getTransportMetadata() == null) {
throw new IllegalArgumentException("TransportMetadata");
}
if (!getTransportMetadata().getSessionConfigType().isAssignableFrom(
sessionConfig.getClass())) {
throw new IllegalArgumentException("sessionConfig type: "
+ sessionConfig.getClass() + " (expected: "
+ getTransportMetadata().getSessionConfigType() + ")");
}
listeners = new IoServiceListenerSupport(this);
listeners.add(serviceActivationListener);
this.sessionConfig = sessionConfig;
ExceptionMonitor.getInstance();
if (executor == null) {
this.executor = Executors.newCachedThreadPool();
createdExecutor = true;
} else {
this.executor = executor;
createdExecutor = false;
}
threadName = getClass().getSimpleName() + '-' + id.incrementAndGet();
}
从AbstractIoService 构造函数来分析可以得知
1、AbstractIoService中只定义了上面的构成函数,没有显式定义无参构造函数,所以在子类的初始化在肯定会调用super(IoSessionConifg,Executor),再从上面构造函数前面的判断来看,IoSessionConfig,TransportMetadata都是由子类构造函数传入。Executor 参数子类可传可不传,不传默认Executors.newCachedThreadPool();创建。
2、IoServiceListener 列表的管理交给了IoServiceListenerSupport去处理。并添加了一个IoService激活事件的监听器。
3、创建了一个ExceptionMonitor实例
4、定义了构造Acceptor处理线程名称的逻辑
构造函数之外,AbstractIoService 也定义了一些默认实现
1、IoFilterChain 默认交给DefaultIoFilterChainBuilder 创建
2、IoSessionDataStructureFactory 默认实现为 DefaultIoSessionDataStructureFactory
3、实现了dispose的基本逻辑,为什么说是基本逻辑呢?因为dispose调用的 dispose0方法是交由子类去实现的
public final void dispose(boolean awaitTermination) {
if (disposed) {
return;
}
synchronized (disposalLock) {
if (!disposing) {
disposing = true;
try {
dispose0();
} catch (Exception e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
}
}
}
if (createdExecutor) {
ExecutorService e = (ExecutorService) executor;
e.shutdownNow();
if (awaitTermination) {
//Thread.currentThread().setName();
try {
LOGGER.debug("awaitTermination on {} called by thread=[{}]", this, Thread.currentThread().getName());
e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
LOGGER.debug("awaitTermination on {} finished", this);
} catch (InterruptedException e1) {
LOGGER.warn("awaitTermination on [{}] was interrupted", this);
// Restore the interrupted status
Thread.currentThread().interrupt();
}
}
}
disposed = true;
}
4、实现了broadcast
public final Set<WriteFuture> broadcast(Object message) {
// Convert to Set. We do not return a List here because only the
// direct caller of MessageBroadcaster knows the order of write
// operations.
final List<WriteFuture> futures = IoUtil.broadcast(message,
getManagedSessions().values());
return new AbstractSet<WriteFuture>() {
@Override
public Iterator<WriteFuture> iterator() {
return futures.iterator();
}
@Override
public int size() {
return futures.size();
}
};
}
AbstractIoAcceptor 继承自AbstractIoService并实现了IoAcceptor接口,主要的实现有:
1、增加一个可配置的SocketAddress 列表 defaultLocalAddresses ,以及这个列表的只读版本
2、增加一个已绑定的SocketAddress 列表
3、增加一个disconnectOnUnbind 配置,指定在Unbind时是否断掉与客户端的链接
4、实现了bind的基本逻辑,更具体的逻辑在bindInternal中交由子类去实现
public final void bind(Iterable<? extends SocketAddress> localAddresses) throws IOException {
if (isDisposing()) {
throw new IllegalStateException("Already disposed.");
}
if (localAddresses == null) {
throw new IllegalArgumentException("localAddresses");
}
List<SocketAddress> localAddressesCopy = new ArrayList<SocketAddress>();
for (SocketAddress a: localAddresses) {
checkAddressType(a);
localAddressesCopy.add(a);
}
if (localAddressesCopy.isEmpty()) {
throw new IllegalArgumentException("localAddresses is empty.");
}
boolean activate = false;
synchronized (bindLock) {
synchronized (boundAddresses) {
if (boundAddresses.isEmpty()) {
activate = true;
}
}
if (getHandler() == null) {
throw new IllegalStateException("handler is not set.");
}
try {
Set<SocketAddress> addresses = bindInternal( localAddressesCopy );
synchronized (boundAddresses) {
boundAddresses.addAll(addresses);
}
} catch (IOException e) {
throw e;
} catch (RuntimeException e) {
throw e;
} catch (Throwable e) {
throw new RuntimeIoException(
"Failed to bind to: " + getLocalAddresses(), e);
}
}
if (activate) {
getListeners().fireServiceActivated();
}
}
5、实现了unbind的基本逻辑,更具体的逻辑在unbind0中交由子类实现
public final void unbind(Iterable<? extends SocketAddress> localAddresses) {
if (localAddresses == null) {
throw new IllegalArgumentException("localAddresses");
}
boolean deactivate = false;
synchronized (bindLock) {
synchronized (boundAddresses) {
if (boundAddresses.isEmpty()) {
return;
}
List<SocketAddress> localAddressesCopy = new ArrayList<SocketAddress>();
int specifiedAddressCount = 0;
for (SocketAddress a: localAddresses ) {
specifiedAddressCount++;
if ((a != null) && boundAddresses.contains(a) ) {
localAddressesCopy.add(a);
}
}
if (specifiedAddressCount == 0) {
throw new IllegalArgumentException( "localAddresses is empty." );
}
if (!localAddressesCopy.isEmpty()) {
try {
unbind0(localAddressesCopy);
} catch (RuntimeException e) {
throw e;
} catch (Throwable e) {
throw new RuntimeIoException(
"Failed to unbind from: " + getLocalAddresses(), e );
}
boundAddresses.removeAll(localAddressesCopy);
if (boundAddresses.isEmpty()) {
deactivate = true;
}
}
}
}
if (deactivate) {
getListeners().fireServiceDeactivated();
}
}
AbstractPollingIoAcceptor<T extends AbstractIoSession, H>
泛参H在子类NioSocketAcceptor中替换为ServerSocketChannel,泛参T替换为NioSession。这样便于分析后面的代码。
主要实现了bind,accept,dispose ServerSocket的基本逻辑。父类AbstractIoService中的Executor主要用于执行ServerSocket的accept逻辑。一旦与客户端建立连接后,之后的I/O操作将交由IoProcessor去处理。关于ServerSocketChannel 的 select,open,close,accept都交由子类实现
私有构造函数定义了IoProcessor实例由外部注入,并初始化seelectable标记为true。具体的init()逻辑由子类去实现。
private AbstractPollingIoAcceptor(IoSessionConfig sessionConfig,
Executor executor, IoProcessor<NioSession> processor,
boolean createdProcessor) {
super(sessionConfig, executor);
if (processor == null) {
throw new IllegalArgumentException("processor");
}
//注入IoProcessor对象
this.processor = processor;
this.createdProcessor = createdProcessor;
try {
//初始化设置交给子类实现
init();
// 构造函数中设置标记为true,后面便可以s
selectable = true;
} catch (RuntimeException e) {
throw e;
} catch (Exception e) {
throw new RuntimeIoException("Failed to initialize.", e);
} finally {
if (!selectable) {
try {
destroy();
} catch (Exception e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
}
}
}
}
其他几个重载的构造函数注入默认IoProcessor为SimpleIoProcessorPool实例
protected AbstractPollingIoAcceptor(IoSessionConfig sessionConfig,
Class<? extends IoProcessor<T>> processorClass, int processorCount) {
this(sessionConfig, null, new SimpleIoProcessorPool<T>(processorClass,
processorCount), true);
}
提供了一个轮询策略的Acceptor的实现
private class Acceptor implements Runnable {
public void run() {
// nHandles 表示已经open的ServerSocketChannel数量
int nHandles = 0;
//无限循环,接收客户端的链接请求,并处理,直到所有opened ServerSocketChannel都被close
while (selectable) {
try {
//轮询获得
int selected = select();
//open ServerSocketChannel并增加nHandles
nHandles += registerHandles();
if (selected > 0) {
// We have some connection request, let's process
// them here.
processHandles(selectedHandles());
}
//close ServerSocketChannel并减少nHandles
nHandles -= unregisterHandles();
//没有ServerSocketChannel在监听客户端的请求,跳出循环
if (nHandles == 0) {
synchronized (lock) {
if (registerQueue.isEmpty()
&& cancelQueue.isEmpty()) {
acceptor = null;
break;
}
}
}
} catch (ClosedSelectorException cse) {
break;
} catch (Throwable e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
ExceptionMonitor.getInstance().exceptionCaught(e1);
}
}
}
if (selectable && isDisposing()) {
selectable = false;
try {
if (createdProcessor) {
processor.dispose();
}
} finally {
try {
synchronized (disposalLock) {
if (isDisposing()) {
destroy();
}
}
} catch (Exception e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
} finally {
disposalFuture.setDone();
}
}
}
}
private void processHandles(Iterator<ServerSocketChannel> handles) throws Exception {
while (handles.hasNext()) {
ServerSocketChannel handle = handles.next();
handles.remove();
// 接收客户端的请求,建立链接,返回对链接信息封装后的IoSession
NioSession session = accept(processor, handle);
if (session == null) {
break;
}
// 初始化IoSession信息
initSession(session, null, null);
// 将连接的I/O(read,write,close etc)交给Processor线程处理
session.getProcessor().add(session);
}
}
}
private int registerHandles() {
//开启一个无限循环,不断从registerQueue队列中获取AcceptorOperationFuture,直到registerQueue为空
for (;;) {
AcceptorOperationFuture future = registerQueue.poll();
if (future == null) {
return 0;
}
// 创建一个临时的map以便在打开socket的时候出现异常及时释放资源
Map<SocketAddress, ServerSocketChannel> newHandles = new ConcurrentHashMap<SocketAddress, ServerSocketChannel>();
List<SocketAddress> localAddresses = future.getLocalAddresses();
try {
for (SocketAddress a : localAddresses) {
//遍历所有的SocketAddress,open ServerSocketChannel
ServerSocketChannel handle = open(a);
newHandles.put(localAddress(handle), handle);
}
// 未出现异常,将所有open成功的ServerSocketChannel放到boundHandles
boundHandles.putAll(newHandles);
// 设置异步处理完成
future.setDone();
// 返回open成功的ServerSocketChannel的数量
return newHandles.size();
} catch (Exception e) {
future.setException(e);
} finally {
//在open时出现了异常,释放相应的 资源
if (future.getException() != null) {
for (ServerSocketChannel handle : newHandles.values()) {
try {
close(handle);
} catch (Exception e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
}
}
wakeup();
}
}
}
}
// 关闭ServerSocketChannel
private int unregisterHandles() {
int cancelledHandles = 0;
// 循环从cancelQueue队列中获取待关闭的ServerSocketChannel,直到cancelQueue清空
for (;;) {
AcceptorOperationFuture future = cancelQueue.poll();
if (future == null) {
break;
}
for (SocketAddress a : future.getLocalAddresses()) {
// 先从已绑定的ServerSocketChannel列表中移除
ServerSocketChannel handle = boundHandles.remove(a);
if (handle == null) {
continue;
}
try {
//关闭ServerSocketChannel,真正的实现交给子类
close(handle);
wakeup();
} catch (Throwable e) {
ExceptionMonitor.getInstance().exceptionCaught(e);
} finally {
cancelledHandles++;
}
}
//
future.setDone();
}
//返回已关闭的ServerSocketChannel的数量
return cancelledHandles;
}
NioSocketAcceptor
基于tcp协议的java nio版IoAcceptor实现,到这里已经实现所有的网络I/O操作。
//默认的ServerSocket的backlog属性为50
private int backlog = 50;
// 默认reuseAddress为false
private boolean reuseAddress = false;
// java nio 中的selector,状态改变多线程可见
private volatile Selector selector;
//构造函数出入的默认IoSessionConfig实现为DefaultSocketSessionConfig
public NioSocketAcceptor() {
super(new DefaultSocketSessionConfig(), NioProcessor.class);
((DefaultSocketSessionConfig) getSessionConfig()).init(this);
}
// 如果你熟悉java nio,看到这些代码是否有种豁然开朗的感觉呢?原来是这样的啊!
@Override
protected void init() throws Exception {
selector = Selector.open();
}
@Override
protected void destroy() throws Exception {
if (selector != null) {
selector.close();
}
}
public TransportMetadata getTransportMetadata() {
return NioSocketSession.METADATA;
}
@Override
protected NioSession accept(IoProcessor<NioSession> processor,
ServerSocketChannel handle) throws Exception {
SelectionKey key = handle.keyFor(selector);
if ((key == null) || (!key.isValid()) || (!key.isAcceptable()) ) {
return null;
}
SocketChannel ch = handle.accept();
if (ch == null) {
return null;
}
return new NioSocketSession(this, processor, ch);
}
@Override
protected ServerSocketChannel open(SocketAddress localAddress)
throws Exception {
// Creates the listening ServerSocket
ServerSocketChannel channel = ServerSocketChannel.open();
boolean success = false;
try {
// This is a non blocking socket channel
channel.configureBlocking(false);
// Configure the server socket,
ServerSocket socket = channel.socket();
// Set the reuseAddress flag accordingly with the setting
socket.setReuseAddress(isReuseAddress());
// and bind.
socket.bind(localAddress, getBacklog());
// Register the channel within the selector for ACCEPT event
channel.register(selector, SelectionKey.OP_ACCEPT);
success = true;
} finally {
if (!success) {
close(channel);
}
}
return channel;
}
@Override
protected void close(ServerSocketChannel handle) throws Exception {
SelectionKey key = handle.keyFor(selector);
if (key != null) {
key.cancel();
}
handle.close();
}
@Override
protected void wakeup() {
selector.wakeup();
}