第3 章的连接器工作得很好,而且本可以设计地更好。但是,我们只是将它设计成教学工具,来介 绍Tomcat 4 的默认连接器。理解第3 章的连接器,是理解Tomcat 4 默认连 接器的关键。第4 章将会通过解剖(dissect )Tomcat 4 默认 连接器的代码,来讨论如何构建真正的Tomcat 连接器。
提示:本章的“默认连接器” 就是指Tomcat 4 默认连接器。尽管默认连接器已经废弃(deprecated ),被更快的Coyote 连接器代替了,但是它仍然是一个很好的学习工具。
Tomcat 连接器是一个可以插入Servlet 容 器的独立模块。现在已经有很多连接器,例如Coyote 、mod_jk 、mod_jk2 和mod_webapp 。一个Tomcat 连 接器 满足下面的需求:
Tomcat 4 默认连接器和第3 章中简单连接器的工作原理类似。它等待接受HTTP 请 求,创建请求对象和响应对象,然后将这两个对象传给容器。连接器通过调用org.apache.catalina.Container 接 口的invoke 方法,将请求对象和响应对象传递给容器。invoke 方法的原型如下:
public void invoke( org.apache.catalina.Request request, org.apache.catalina.Response response);
在invoke 方法内部,容器加载servlet 类, 调用其service 方法,管理会话,打印错误日志等等。默认连接器还利用了一些第3 章连接器没有的优化措施。首先,默认连接器提供了对象池来避免昂贵的对象创建。第二, 默认连接器在很多地方使用字符数组来代替字符串。
本章的应用,是一个与默认连接器关联的、简单的容器。不过,本章的焦点不是这个容器,而是默认连接器。容器将在第5 章被讨论。不管怎么样,我们还是在本章的最后一节“简单的容器程序”讨论该容器,以演示如何使用默认连接器。
另一个需要注意的地方是,默认连接器实现了那些在HTTP 1.1 中新加 的、同样可以服务HTTP 0.9 和HTTP 1.0 客户的特性。为了理解HTTP 1.1 的新特性,你首先需要理解这些特性,我们将在本章第一节解释它们。在此之后,我们讨论org.apache.catalina.Connector ,如何创建请求对象和响应对象。如果你理解第3 章的连接器是如何工作的,你也不难理解默认连接器。
本章以HTTP 1.1 的3 个 新特性作为开始。理解它们是理解默认连接器内部原理的关键。然后,本章介绍了所有连接器都必须是实现的org.apache.catalina.Connector 接 口。你会发现第3章中已经遇到的一些类,像HttpConnector 、HttpProcessor 等等。不过,现在这些类比第3 章要高级的多。
本节介绍HTTP 1.1 的三个新特性。理解这些特性,对于理解默认连接器如何处理HTTP 请求,是非常关键的。
在HTTP 1.1 之 前,无论浏览器什么时候连接上Web 服务器,服务器在发送完被请求资源之后立 刻关闭连接。但是,一个网页可以包含其他资源,例如图片文件、applets 等。 因此,当一个页面被请求时,浏览器也需要下载该页面引用的资源。如果页面及其引用的所有资源都通过不同的连接下载,那么整个处理过程会很慢。这就是HTTP 1.1 引入持久化连接的原因。对于持久化连接,页面下载完成后,服务器不会直 接关闭连接,而是等待客户端请求该页面引用的所有资源。这样,页面及其引用的所有资源均使用同一个连接下载。考虑到建立和关闭HTTP 连接都是昂贵的操作,这种方式将大大节省了Web 服务器、客户端及网络的负载和时间。
持久化连接是HTTP 1.1 的默认连接。浏览器也可以通过发送下面的connection 头部,显式地告诉服务器使用持久化连接:
connection: keep-alive
建立持久化连接的一个结果就是,服务器可以在同一个连接上发送多个资源的字节流,客户端也可以在同一个连接上发送多个请求。因此,发送者必须发送每个请求 或响应的content-length 头部,这样接收者才知道如何解析接收到字节流。 但是通常情况下,发送者并不知道要发送多少字节。举个例子,servlet 容 器可以在部分字节准备好时就开始发送响应,而不要等到所有字节都准备好。这意味着,必须有一种方法告诉接收者:在不能提前知道content- length头部的情况下,如何解析字节流。
即使没有发送多个请求或响应,服务器或客户端也没有必要知道,究竟多少数据将被发送。在HTTP 1.0 中,服务器可以省略content-length 头部,直接向 连接写如数据。当写入完成时,服务器会简单地关闭连接。在这种情况下,客户端持续读取,直到返回标识字节流结束的-1 。
HTTP 1.1 利 用了一个名为transfer-encoding 的特殊头部,来指示字节流将按照chunk 的形式被发送。每个chunk 的格式是:首先是十六进制的长度,后面跟着一个CR/LF , 然后是数据。零长度的chunk 标识了一个传输单元(transaction )。假设在某个传输中,你想以2 个chunk 的形式发送下面的38 个字节,第一个chunk 长 度为29 ,第二个chunk 长 度为9 。
I'm as helpless as a kitten up a tree.
你可以发送下面的内容:
1D\r\n
I'm as helpless as a kitten u
9\r\n
p a tree.
0\r\n
1D ,29 的 十六进制形式,指示第一个chunk 包括29 个字节。0\r\n 标识该传输单元的结 束。
如果HTTP 1.1 客户端打算发送很长的请 求,但是不确定服务器是否愿意接收,那么,它可以在发送请求体之前先发送Expect: 100-continue 头部给服务器,然后等待服务器的确认。不这么做的话,如果客户端发送了很长的请求体,最终发现被服务器拒绝了,那 么这就太浪费了。
接收到Expect: 100-continue 头 部之后,如果服务器愿意(will to )或能够(can )处理请求,那么服务器会返回下面的100-continue 头部,头部后面再跟两对CRLF 。
HTTP/1.1 100 Continue
接着,服务器继续读取输入流。
Tomcat 连接器必须实现org.apache.catalina.Connector 接 口。该接口的众多方法中,最重要的是getContainer 、setContainer 、createRequest 和createResponse 。
setContainer 方法用来将连接器和容器关联起来。getContainer 方法返回关联的容器。createRequest 方 法为进来的HTTP 请求创建一个请求对象,createResponse 方法创建一个响应对象。
org.apache.catalina.connector.http.HttpConnector 是Connector 接口的一个实现类,下一节“The HttpConnector Class ”将讨论它。现在,我们看看默认连接其的类图Figure 4.1 。注意,为了简化类图,Request 和Response 接口的实现类被省略了。除 了Simplecontainer 类,其他都省略了前缀“org.apache.catalina ”,只保留类型名。
因此,连接器...(原文找不到,省略部分文字)
连接器和容器是一对一的关联关系。关联关系的箭头方向表明,连接器知道容器,而容器却不知道连接器。同时需要注意,与第3 章不同,HttpConnector 与HttpProcessor 的关系变成了一对多。
第3 章已经介绍了org.apache.catalina.connector.http.HttpConnector 的 一个简化版,因此你其实已经知道了HttpConnector 的工作原理。HttpConnector 实现了org.apache.catalina.Connector 接 口 (为了和Catalina 协调),java.lang.Runnable 接口 (这样它的实例就可以运行在自己的线程中),以及
private Stack processors = new Stack();
protected int minProcessors = 5; private int maxProcessors = 20;
while (curProcessors < minProcessors) { if ((maxProcessors > 0) && (curProcessors >= maxProcessors)) break; HttpProcessor processor = newProcessor(); recycle(processor); }
while (!stopped) { Socket socket = null; try { socket = serverSocket.accept(); ...
HttpProcessor processor = createProcessor();
if (processor == null) { try { log(sm.getString("httpConnector.noProcessor")); socket.close(); } ... continue;
processor.assign(socket);
public void run() { ... while (!stopped) { Socket socket = null; try { socket = serversocket.accept(); } catch (Exception e) { continue; } // Hand this socket off to an Httpprocessor HttpProcessor processor = new Httpprocessor(this); processor.process(socket); } }
public void run() { // Process requests until we receive a shutdown signal while (!stopped) { // Wait for the next socket to be assigned Socket socket = await(); if (socket == null) continue; // Process the request from this socket try { process(socket); } catch (Throwable t) { log("process.invoke", t); } // Finish up this request connector.recycle(this); } // Tell threadStop() we have shut ourselves down successfully synchronized (threadSync) { threadSync.notifyAll(); } }
void recycle(HttpProcessor processor) { processors.push(processor); }
提示:wait方法导致当前线程等待,直到另一个线程调用了该对象的notify或notifyAll方法。
这里是HttpProcessor的assign方法和await方法:
synchronized void assign(Socket socket) { // Wait for the processor to get the previous socket while (available) { try { wait(); } catch (InterruptedException e) { } } // Store the newly available Socket and notify our thread this.socket = socket; available = true; notifyAll(); ... } private synchronized Socket await() { // Wait for the Connector to provide a new Socket while (!available) { try { wait(); } catch (InterruptedException e) { } } // Notify the Connector that we have received this Socket Socket socket = this.socket; available = false; notifyAll(); if ((debug >= 1) && (socket != null)) log(" The incoming request has been awaited"); return (socket); }
Table 4.1总结了这两个方法的程序流(program flow)。
Table 4.1: Summary of the await and assign method
The processor thread (the await method) The connector thread (the assign method)
while (!available) { while (available) {
wait(); wait();
} }
Socket socket = this.socket; this.socket = socket;
available = false; available = true;
notifyAll(); notifyAll();
return socket; // to the run method ...
一开始,当“处理器线程”刚刚启动时,available为false,所以“处理器线程”在while循环中等待(参见Table 4.1的第1列)。它会一直等待直到另一个线程调用notify或notifyAll方法为止。这就是说,调用await方法导致“处理器线程”暂停,直 到“连接器线程”调用HttpProcessor实例的notifyAll方法。
现在,看看第2列。当一个新套接字被分配(assign)时,“连接器线程”调用HttpProcessor的assign方法。available的值 为false,因此while循环被跳过去,套接字被赋值给HttpProcessor实例的socket变量:
this.socket = socket;
接着,“连接器线程”将available设置成true,并调用notifyAll方法。这会唤醒“处理器线程”,而且现在available的值为 true,“处理器线程”从而离开while循环:将实例变量socket赋值给本地变量socket,设置available为false,调用 notifyAll方法,返回本地变量socket,最终套接字将被处理。
为什么await方法需要使用本地变量(socket),而不是返回实例变量socket呢?这样做,当前套接字被处理完之前,下一个套接字就可以赋值给 实例变量socket。
为什么await方法需要调用notifyAll呢?就是为了解决这个问题:available值为true时另一个套接字到达。在这种情况下,“连接器 线程”将停在assign方法while循环中,直到“处理器线程”调用notifyAll。
org.apache.catalina.Request接口代表了默认连接器的HTTP请求对象。该接口被HttpRequest的父类 RequestBase直接继承。最终的实现是HttpRequest的子类HttpRequestImpl。就像第3章一样,这里也有几个门面 (facade)类:RequestFacade和HttpRequestFacade。Figure 4.2给出了Request接口及其实现类的UML图。注意该图不包括javax.servlet和javax.servlet.http包中的类型,前 缀org.apache.catalina被省略。
如果你理解第3章中的请求对象,那么你应该能够理解上面这张图。
Figure 4.3 给出了Response接口及其实现类的UML图。
到这里,你已经理解了HttpConnector是如何创建请求对象和响应对象的。现在是整个处理过程的最后一步。本节我们重点关注 HttpProcess的process方法。HttpProcess得到套接字之后,其run方法就会调用process方法。process方法会执 行以下操作:
解释完process方法后,我们会分子章节讨论上述每个操作。
boolean ok = true; boolean finishResponse = true;
SocketInputStream input = null; OutputStream output = null; // Construct and initialize the objects we will need try { input = new SocketInputStream(socket.getInputstream(), connector.getBufferSize()); } catch (Exception e) { ok = false; }
然后,有一个while循环,不断从输入流中读取数据,直到HttpProcessor停止,或抛出异常,或连接关闭。
keepAlive = true; while (!stopped && ok && keepAlive) { ... }
finishResponse = true; try { request.setStream(input); request.setResponse(response); output = socket.getOutputStream(); response.setStream(output); response.setRequest(request); ((HttpServletResponse) response.getResponse()).setHeader ("Server", SERVER_INFO); } catch (Exception e) { log("process.create", e); //第7章将讨论日志 ok = false; }
try { if (ok) { parseConnection(socket); parseRequest(input, output); if (!request.getRequest().getProtocol() .startsWith("HTTP/0")) parseHeaders(input);
if (http11) { // Sending a request acknowledge back to the client if // requested. ackRequest(output); // If the protocol is HTTP/1.1, chunking is allowed. if (connector.isChunkingAllowed()) response.setAllowChunking(true); }
try { ((HttpServletResponse) response).setHeader ("Date", FastHttpDateFormat.getCurrentDate()); if (ok) { connector.getContainer().invoke(request, response); } }
if (finishResponse) { ... response.finishResponse(); ... request.finishRequest(); ... output.flush();
if ( "close".equals(response.getHeader("Connection")) ) { keepAlive = false; } // End of request processing status = Constants.PROCESSOR_IDLE; // Recycling the request and the response objects request.recycle(); response.recycle(); }
try { shutdownInput(input); socket.close(); } ...
private void parseConnection(Socket socket) throws IOException, ServletException { if (debug >= 2) log(" parseConnection: address=" + socket.getInetAddress() + ", port=" + connector.getPort()); ((HttpRequestImpl) request).setInet(socket.getInetAddress()); if (proxyPort != 0) request.setServerPort(proxyPort); else request.setServerPort(serverPort); request.setSocket(socket); }
static final char[] AUTHORIZATION_NAME = "authorization".toCharArray(); static final char[] ACCEPT_LANGUAGE_NAME = "accept-language".toCharArray(); static final char[] COOKIE_NAME = "cookie".toCharArray(); ...
HttpHeader header = request.allocateHeader(); // Read the next header input.readHeader(header); //If all headers have been read, the readHeader method will assign no name to the //HttpHeader instance, and this is time for the parseHeaders method to return. if (header.nameEnd == 0) { if (header.valueEnd == 0) { return; } else { throw new ServletException (sm.getString("httpProcessor.parseHeaders.colon")); } }
String value = new String(header.value, 0, header.valueEnd);
if (header.equals(DefaultHeaders.AUTHORIZATION_NAME)) { request.setAuthorization(value); } else if (header.equals(DefaultHeaders.ACCEPT_LANGUAGE_NAME)) { parseAcceptLanguage(value); } else if (header.equals(DefaultHeaders.COOKIE_NAME)) { // parse cookie } else if (header.equals(DefaultHeaders.CONTENT_LENGTH_NAME)) { // get content length } else if (header.equals(DefaultHeaders.CONTENT_TYPE_NAME)) { request.setContentType(value); } else if (header.equals(DefaultHeaders.HOST_NAME)) { // get host name } else if (header.equals(DefaultHeaders.CONNECTION_NAME)) { if (header.valueEquals(DefaultHeaders.CONNECTION_CLOSE_VALUE)) { keepAlive = false; response.setHeader("Connection", "close"); } } else if (header.equals(DefaultHeaders.EXPECT_NAME)) { if (header.valueEquals(DefaultHeaders.EXPECT_100_VALUE)) sendAck = true; else throw new ServletException(sm.getstring ("httpProcessor.parseHeaders.unknownExpectation")); } else if (header.equals(DefaultHeaders.TRANSFER_ENCODING_NAME)) { //request.setTransferEncoding(header); } request.nextHeader();
package ex04.pyrmont.core; import java.beans.PropertyChangeListener; import java.net.URL; import java.net.URLClassLoader; import java.net.URLStreamHandler; import java.io.File; import java.io.IOException; import javax.naming.directory.DirContext; import javax.servlet.Servlet; import javax.servlet.ServletException; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import org.apache.catalina.Cluster; import org.apache.catalina.Container; import org.apache.catalina.ContainerListener; import org.apache.catalina.Loader; import org.apache.catalina.Logger; import org.apache.catalina.Manager; import org.apache.catalina.Mapper; import org.apache.catalina.Realm; import org.apache.catalina.Request; import org.apache.catalina.Response; public class SimpleContainer implements Container { public static final String WEB_ROOT = System.getProperty("user.dir") + File.separator + "webroot"; public SimpleContainer() { } public String getInfo() { return null; } public Loader getLoader() { return null; } public void setLoader(Loader loader) { } public Logger getLogger() { return null; } public void setLogger(Logger logger) { } public Manager getManager() { return null; } public void setManager(Manager manager) { } public Cluster getCluster() { return null; } public void setCluster(Cluster cluster) { } public String getName() { return null; } public void setName(String name) { } public Container getParent() { return null; } public void setParent(Container container) { } public ClassLoader getParentClassLoader() { return null; } public void setParentClassLoader(ClassLoader parent) { } public Realm getRealm() { return null; } public void setRealm(Realm realm) { } public DirContext getResources() { return null; } public void setResources(DirContext resources) { } public void addChild(Container child) { } public void addContainerListener(ContainerListener listener) { } public void addMapper(Mapper mapper) { } public void addPropertyChangeListener( PropertyChangeListener listener) { } public Container findchild(String name) { return null; } public Container[] findChildren() { return null; } public ContainerListener[] findContainerListeners() { return null; } public Mapper findMapper(String protocol) { return null; } public Mapper[] findMappers() { return null; } public void invoke(Request request, Response response) throws IoException, ServletException { string servletName = ( (Httpservletrequest) request).getRequestURI(); servletName = servletName.substring(servletName.lastIndexof("/") + 1); URLClassLoader loader = null; try { URL[] urls = new URL[1]; URLStreamHandler streamHandler = null; File classpath = new File(WEB_ROOT); string repository = (new URL("file",null, classpath.getCanonicalpath() + File.separator)).toString(); urls[0] = new URL(null, repository, streamHandler); loader = new URLClassLoader(urls); } catch (IOException e) { System.out.println(e.toString() ); } Class myClass = null; try { myClass = loader.loadclass(servletName); } catch (classNotFoundException e) { System.out.println(e.toString()); } servlet servlet = null; try { servlet = (Servlet) myClass.newInstance(); servlet.service((HttpServletRequest) request, (HttpServletResponse) response); } catch (Exception e) { System.out.println(e.toString()); } catch (Throwable e) { System.out.println(e.toString()); } } public Container map(Request request, boolean update) { return null; } public void removeChild(Container child) { } public void removeContainerListener(ContainerListener listener) { } public void removeMapper(Mapper mapper) { } public void removoPropertyChangeListener( PropertyChangeListener listener) { } }
package ex04.pyrmont.startup; import ex04.pyrmont.core.simplecontainer; import org.apache.catalina.connector.http.HttpConnector; public final class Bootstrap { public static void main(string[] args) { HttpConnector connector = new HttpConnector(); SimpleContainer container = new SimpleContainer(); connector.setContainer(container); try { connector.initialize(); connector.start(); // make the application wait until we press any key. System in.read(); } catch (Exception e) { e.printStackTrace(); } } }