在编程生活中,我们总会遇见属性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程。现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的)
1、深度优先
英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。
深度优先遍历各个节点,需要使用到堆(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:
首先将A节点压入堆中,stack(A);
将A节点弹出,同时将A的子节点C,B压入堆中,此时B在堆的顶部,stack(B,C);
将B节点弹出,同时将B的子节点E,D压入堆中,此时D在堆的顶部,stack(D,E,C);
将D节点弹出,没有子节点压入,此时E在堆的顶部,stack(E,C);
将E节点弹出,同时将E的子节点I压入,stack(I,C);
...依次往下,最终遍历完成,Java代码大概如下:
public void depthFirst() { Stack<Map<String, Object>> nodeStack = new Stack<Map<String, Object>>(); Map<String, Object> node = new HashMap<String, Object>(); nodeStack.add(node); while (!nodeStack.isEmpty()) { node = nodeStack.pop(); System.out.println(node); List<Map<String, Object>> children = node.getChildren(); if (children != null && !children.isEmpty()) { for (Map child : children) { nodeStack.push(child); } } } } //节点使用Map存放 |
2、广度优先
英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。
广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首位都可以插入和弹出节点。整个遍历过程如下:
首先将A节点插入队列中,queue(A);
将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);
将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);
将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);
将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);
...依次往下,最终遍历完成,Java代码大概如下:
public void breadthFirst() { Deque<Map<String, Object>> nodeDeque = new ArrayDeque<Map<String, Object>>(); Map<String, Object> node = new HashMap<String, Object>(); nodeDeque.add(node); while (!nodeDeque.isEmpty()) { node = nodeDeque.peekFirst(); System.out.println(node); List<Map<String, Object>> children = node.getChildren(); if (children != null && !children.isEmpty()) { for (Map child : children) { nodeDeque.add(child); } } } } //这里使用的是双端队列,和使用queue是一样的 |