转载: 通用权限管理设计 之 数据权限
前一篇文章《通用权限管理设计 之 数据库设计方案》介绍了【主体】- 【领域】 - 【权限】( who、what、how问题原型 ) 的设计思想
本文将对这种设计思想作进一步的扩展,介绍数据权限的设计方案。
权限控制可以理解,分为这几种 :
【功能权限】:能做什么的问题,如增加产品。
【数据权限】:能看到哪些数据的问题,如查看本人的所有订单。
【字段权限】:能看到哪些信息的问题,如供应商账户,看不到角色、 部门等信息。
上面提到的那种设计就是【功能权限】,这种设计有一定的局限性,对于主体,只能明确地指定。对于不明确的,在这里可能就没办法处理。比如下面这几种情况:
数据仅当前部门及上级可见
数据仅当前用户(本人)可见
类似这样的就需要用到上面提的数据权限。
上一篇文章我用一个表五个字段完成了【功能权限】的设计思路
本文我将介绍如何利用一个表两个字段完成这个【数据权限】的设计思路
初步分析
【数据权限】是在【功能权限】的基础上面进一步的扩展,比如可以查看订单属于【功能权限】的范围,但是可以查看哪些订单就是【数据权限】的工作了。
在设计中,我们规定好如果没有设置了数据权限规则,那么视为允许查看全部的数据。
几个概念
【资源】:数据权限的控制对象,业务系统中的各种资源。比如订单单据、销售单等。属于上面提到的【领域】中的一种
【主体】:用户、部门、角色等。
【条件规则】:用于检索数据的条件定义
【数据规则】:用于【数据权限】的条件规则
应用场景
1,订单,可以由本人查看
2,销售单,可以由本人或上级领导查看
3,销售单,销售人员可以查看自己的,销售经理只查看 销售金额大于100,000的。
我们能想到直接的方法,在访问数据的入口加入SQL Where条件来实现,组织sql语句:
1,where UserID = {CurrentUserID} 2,where UserID = {CurrentUserID} or {CurrentUserID} in (领导) 3,where UserID = {CurrentUserID} or ({CurrentUserID} in (销售经理) and 销售金额 > 100000)
这些一个一个的"条件",本文简单理解为一个【数据规则】,通常会与原来我们前台的业务过滤条件合并再检索出数据。
这是一种最直接的实现方式,在【资源】上面加一个【数据规则】(比如上面的三点)。这样设计就是
【资源】 - 【数据规则】
我又觉得不同的人应该对应不同的规则,那么也可以理解为,一个用户对应不同的角色,每一个角色有不一样的【数据规则】,那么设计就变成
【资源】 - 【主体】 - 【数据规则】
根据提供者的不同,准备不同的权限应对策略。
这里可以简单地介绍一下,这个方案至少需要2张表,一个是 【资源,主体,规则关系表】、一个是【数据规则表】
关系表不能直接保存角色,因为你不确定什么时候业务需要按照【部门】或者【分公司】来定义数据规则
于是可以用 Master、MasterKey 类似这样的两个字段来确定一个【主体】
用XML方式的话是这样配置的(放在数据库也类似):
<?xml version="1.0" encoding="utf-8"?> <settings> <rule view="订单" role="销售人员"> 销售员 = {CurrentUserID} </rule> <rule view="订单" role="总销售经理"> 销售金额 > 100000 </rule> <rule view="订单" role="区域销售经理"> 销售金额 > 100000 and 区域 = {当前用户所属区域} </rule> </settings>
对于这种方式有兴趣的朋友也可以试一下,两种方式的【数据规则】是一样的,但是本文没有采用第二种设计方式,因为它多了一层处理逻辑,我以为应该设计越简单越好,就采用第一种方式:
【资源】 - 【数据规则】
当然,上面是用SQL的方式来确定条件规则的,我们当然不会这么做。SQL虽然灵活,但是我们很难去维护,也不知道SQL在我们的界面UI上面如何体现。难不成直接用一个文本框来显示。这样对应一个开发人员来说不是问题,可是对应系统管理员,很容易出问题。所以我们需要有另一方式来确定这一规则,并最终可以转换成我们的SQL语句。
我们的设计关键在于如何规范好这些【数据规则】 ,这个规则必须是对前端友好的,而且是对后台友好的,JSON显然是很好的方式。
规则说明:
1,数据权限规则总是:{属性 条件 允许值}
2,数据权限规则可以合并。比如 ( {当前用户 属于 销售人员} and {订单销售员 等于 当前用户} ) Or {当前用户 属于 销售经理}
3,最终我们会用JSON格式
在检索数据时会先判断有没有注册了某某【资源】的【条件规则】,如果有,那么加载这个【条件规则】并合并到我们前台的【搜索条件】(你的业务界面应该有一个搜索框吧)
如下图定义了客户信息的搜索框,我们搜索客户ID包括AN,我们组织成的规则将会是:
{"rules":[{"field":"CustomerID","op":"like","value":"AN","type":"string"}],"op":"and"}
为了更好地理解【数据规则】,这里介绍一下【通用查询机制】
【通用查询机制】
权限控制总离不开一些条件的限制(比如查看当前部门的单据),如果没有完善的通用查询规则机制,那么在做权限条件过滤的时候你会觉得很别扭。这里介绍一个通用查询方案,然后再介绍如何实现【数据规则】。
早些时候我写过一篇关于ligerGrid结合.net设计通用处理类的文章《 jQuery liger ui ligerGrid 打造通用的分页排序查询表格(提供下载) 》。里面提到的过滤信息是直接的SQL语句。这是不可靠,而且不安全的。
在前端传输给后台的过滤信息不应该是直接的SQL,而应该是一组过滤规则。在ligerui V1.1.8 已经加入了一个条件过滤器插件,这个插件组成的规则数据才是我受推荐的:
比如如下
{"rules":
[
{"field":"OrderDate","op":"less","value":"2012-01-01"},
{"field":"CustomerID","op":"equal","value":"VINET"}
]
,"op":"and"}
规则描述:
查找顾客VINET所有订单时间小于2011-01-01的单据
这样的数据是安全的,而且是通用的(你甚至可以再加一个OR子查询)。无论是在前端还是后台,无论你使用什么样的组件,都可以很好地利用。
通用后台的翻译,就可以生成这样SQL的参数:
Text: ([OrderDate] < @p1 and [CustomerID] = @p2) Parameters: p1:2012-01-01 p2:VINET
下面来点复杂的:查找 顾客VINET或者TOMSP,所有订单时间小于2011-01-01的单据
{
"rules":[{"field":"OrderDate","op":"less","value":"2012-01-01"}],
"groups":[
{"rules":[{"field":"CustomerID","op":"equal","value":"VINET"}, {"field":"CustomerID","op":"equal","value":"TOMSP"}],"op":"or"}
],
"op":"and"
}
翻译结果:
Text:([OrderDate] < @p1 and ([CustomerID] = @p2 or [CustomerID] = @p3)) Parameters: p1:2012-01-01 p2:VINET p3:TOMSP
这个过滤规则分为三个部分:【分组】、【规则】(字段、值、操作符)、【操作符】(and or),而自身就是一个分组。
这种简单的结构就可以满足全部的情况。
当然,上面提到的这些条件都是在前台定义(可能是用户在搜索框自己输入的)的,而在后台,我们可能会定义一下【隐藏条件】,比如说 【员工只能查看自己的】,要怎么做呢,其实很简单,只需要在后台接收到这个过滤条件(前台toJSON,后台解析JSON)以后,再加上一个过滤规则(隐藏条件):
{field:'EmployeeID',op:'equal',value:5}
可以将原来的过滤规则当做一个分组加入进行:
{op:'and',groups:[
{"rules":[{"field":"OrderDate","op":"less","value":"2012-01-01"}],
"groups":[
{"rules":[{"field":"CustomerID","op":"equal","value":"VINET"},{"field":"CustomerID","op":"equal","value":"TOMSP"}],"op":"or"}
],"op":"and"}
],rules:[{field:'EmployeeID',op:'equal',value:5}]
}
翻译如下:
Text: ([EmployeeID] = @p1 and ([OrderDate] < @p2 and ([CustomerID] = @p3 or [CustomerID] = @p4))) Parameters: p1:5 p2:2012-01-01 p3:VINET p4:TOMSP
这样的【条件规则】才是我们想要的,不仅在前端可以很好地解析,也可以在后台进行处理。在后台我们会定义跟这种数据结构对应的类,那么再定义一个翻译成SQL的类:
数据权限规则
说了这些,可以开始介绍如何实现【数据规则】了:
上面提到的【隐藏条件】,就是我介绍的【数据规则】
试想一些,这样 前台的过滤规则,再加上我们之间定义好的 【数据权限】控制 过滤条件。不就达到目的了吗。
先看看我们在数据库里保存的这些【数据规则】:
看不明白?那来个清楚一点的:
规则描述
订单:【订单管理员和演示角色可以查看所有的】,【订单查看员】只能查看自己的
产品:【基础信息录入员和演示角色可以查看所有的】,【供应商】只能查看自己的
{CurrentEmployeeID}表示当前的员工。
实质上,我们还可以根据当前用户信息定义需要的参数,比如:
{CurrentUserID} 当前用户Id ,对应表【CF_User】
{CurrentRoleID} 当前角色Id ,对应表 【CF_Role】
{CurrentDeptID} 当前用户部门Id,对应表【CF_Department】
{CurrentEmployeeID} 当前用户员工Id,对应表【Employees】(CF_User.EmployeeID)
{CurrentSupplierID} 当前用户供应商Id,对应表【Suppliers】(CF_User.SupplierID)
在数据库中我们直接保存这些用户参数,在“翻译”规则成为SQL时,会替换掉:
比如查看订单,我们得到的SQL,可能是这样的:
Text: SELECT * FROM (SELECT TOP 20 * FROM (SELECT TOP 40 * FROM [Orders] WHERE ( 1=1 and ((@p1 in (@p2,@p3)) or (@p4 = @p5 and [EmployeeID] = @p6))) ORDER BY OrderID ASC) AS tmptableinner ORDER BY OrderID DESC) AS tmptableouter ORDER BY OrderID ASC Parameters: @p1[Int32] = 7 @p2[Int32] = 2 @p3[Int32] = 6 @p4[Int32] = 7 @p5[Int32] = 7 @p6[Int32] = 1
{CurrentRuleID} 替换为 7
{CurrentEmployeeID} 替换为1
下图是我们设计【数据权限】的界面,可以选择所有的字段,包括几个用户信息:
这些字段不仅仅只是在文本框中输入值,那么可以自定义数据来源:
var fieldEditors = {}; fieldEditors['Orders'] = { 'ShipCity': { type: 'combobox', options: { width: 200, url: "../handler/select.ashx?view=Orders&idfield=ShipCity&textfield=ShipCity&distinct=true" } } };
效果界面:
实际应用
既然是数据权限控制,如果有一个统一的数据接收入口,我们倒是可以利用这个入口做一些工作。
比如【ligerRM权限管理系统】统一使用 grid.ashx 这个数据处理程序作为列表数据的接收入口。
有了统一的接口,方便做权限的控制,使用过 ligerGrid Javascript表格,或者类似插件的朋友,应该比较清楚服务器的交互原理。
在grid.ashx中,我们会通过
【视图/表名 】、 【排序信息】、【分页信息】、【过滤信息】
这几个指标来获取指定的数据。
而在实际的业务中,可能会引入权限的控制。比如某某【资源】,只能由当前用户自身才能查看,或者只能由当前用户部门及上级部门才能查看。对于这些控制,我们采用对这些可能做权限控制的【资源】注册一组【条件规则】的方式来进行。
我们将找到view定义好的【数据权限规则】,然后和用户在前台搜索框输入的【搜索规则】合并:
上面的代码就是数据条件合并的例子,这样便得到了我们最终需要的 过滤规则。